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1 How to multiply a meromorphic form with
the integration current attached to an an-
alytic cycle

Let V be a pure n—m > 0-dimensional closed analytic set in some open set U
of C" (C™ may as well be replaced by any n-dimensional complex manifold) ;
one can attach to the geometric set V the geometric integration current on
V, that is the unique 0 and O- closed positive current (with type (m,m))
such that, for any (n — m,n — m)-test form in U, which support does not
intersect the singular set Vi, of V', one has :

o =[ e

A meromorphic (g, 0) form (¢ < n—m) on V is by definition an holomorphic
form on some n — m-dimensional complex manifold V' \ W (where W is
an hypersurface of V' which contains Vjng, which implies that V' \ W is a
submanifold of U, where the concept of holomorphicity makes sense) which
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is the restriction to V' \ W of a meromorphic (g, 0)-form in a neighborhood
of V' in the ambiant manifold U. Such a notion is a robust one since all
natural definitions of meromorphicity lead essentially to the same one (see
for example theorem 1 in [16]).

Any coefficient distribution (in fact positive measure) of the integration cur-
rent is regular holonomic, in the sense proposed by J.E. Bjork [5] ; we will
not enter here in the details of this definition, but just mention what will be
important for us later, namely that given any point 2z, in V', one can find,
for any distribution-coefficient u and any holomorphic function g in a neigh-
borhood of zy which is not identically zero on any irreducible branch of V', a
functional equation

on,u,g(c ) 54)[!}”1 ®u| = bzo,u,g()‘) [g)‘ ® u]

where b € Q[A]. In fact, one can show that, if w is a meromorphic form in
a neighborhood of V' whose polar set Y intersects V along some hypersur-
face W of V, one can naturally define w A [V] in some (sufficiently small)
neighborhood V,, of some arbitrary point z; in V' ; assume that h,, is an
holomorphic function which vanishes on ¥ NV in such a neighborhood ;
then, one can define the current w A [V] in V,, as the value at A = 0 of the
(m + g, m)-current-valued function

A= |y [Pw A V]

(such a function happens to have all its poles in {Re A < —¢} fore =¢,, > 0
small enough). The fact that such a definition does not depend on the choice
of h,, shows that it induces a global construction for w A [V]. Such a current
is a principal value type Coleff-Herrera current [7]. Tts 9 is a (m + ¢, m + 1)
current, which is defined (in some open set w where w = @/g, where @ is a
(g,0) holomorphic form) as the restricted Coleff-Herrera residual current :

EE] A& A [V] = Res [();\w] — Res (YNa

ag

(the last equality which is valid for any holomorphic function a in w is known
as a particular case of the transformation law in restricted residue calculus).
Any (g,0) meromorphic form w on V is called holomorphic (in Barlet’s sense
[1]) if and only if d(w A [V]) = 0. This notion differs from the notion of holo-
morphicity introduced by P.Griffiths in [13] (for any resolution of singularities
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TV =V, the pull-back 7*[w] is a (g, 0)-differential form with holomorphic
coefficients on W) ; in fact, Griffith’s condition implies homolorphicity in the
Barlet’s sense (for a comparison of those various non equivalent criteria for
holomorphicity of differential forms, see for example [16], section 2, proposi-
tion 1) ; note also that such criteria should be compared to criteria for the
regularity of differential forms introduced in an algebraic setting, for example
as in the work of Kunz and Waldi (up to our knowledge, such comparison
has still not been clarified).

In order to deal with integration along analytic cycles instead of integration
on geometric sets, we will also have to explain how to “multiply” a mero-
morphic form on V' with any residual current of the Bochner-Martinelli type
which is supported by V. Let fi,..., fas be holomorphic functions in some
open neighborhood of V', such that V :={( € U; fi1(¢) =--- = fu(¢) = 0},
codimV = m. For any ordered subset Z := {iy,...,5; 1 < i3 < --- < g <
M}, k=m,...,min(n, M), one can define a (g, k)-current

()Aw
Res fh,."hﬁk
fla an

as follows : for any neighborhood @ of some point in V such that w = @/g
in w,

() Aw
Res j%l"'ﬂ j%k
Sy fur
—1)k(k=1)/2 k—1)! eonlg 2\ o
= CO = DL o= 92 6 a1 A sl
(2¢) g -
where
k k
AP = VAP 4+ [l Qalf] =Y ()" A
i
and |--- means take the meromorphic continuation in (A, ), which
A=p=0

happens to be holomorphic at (0,0), then take its value at (0,0) ; one can
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show that the definition does not depend on the choice of a denominator for
w. When (f1, ..., far) are such that they define V' as some irreducible analytic
set, it follows from a result by M. Méo [18] that one has the following equality
between (m + g, m) currents :

(YAwANdfyy A+ Ndf;,,

1
V — R i1y o0y Jim y
A= TR | e
fiy s [

where v(f) denotes the Hilbert-Samuel multiplicity of (fi, ..., far) at a generic
point on V.

In the general case, let (fi, ..., far) be holomorphic functions in U, defining a
purely n — m-dimensional analytic closed subvariety V with a finite number
of irreducible components Vi, ..., Vs ; let v,(f), 0 = 1,...; s, be the Hilbert-
Samuel multiplicity of (f1, ..., far) at a generic smooth point z, on V, (that
is the Hilbert-Samuel multiplicity of (f1, ..., far, L1(2 — 24 ), ooy Ly—m(z — 2,))
in O,,, Li,..., L, being n — m generic linear forms) ; it follows from [3]
that if f1, ..., fn+M are defined as :

M
k=1
fm—l—j — f]mma.xua(f)’ ] — 1’ ,M

(for generic Aj;’s) then, one has, for any meromorphic form w on V/,

(VYAwAdfiy, A---Adf;,
wA (z ua(f)[va]> = Y Res Fivs o> Fim
Fisooes Frtam

2 Playing with the incidence variety to define
the trace of a cycle

Let U be a m < n-concave open subset in P"(C), that is for any point in U,
one can find a m-plane £ which contains z and lies completely in U.
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Then, one can construct a dual open set U}, in the grassmanian G(m,n) as
EelU, <= ¢CU.

The set of points

{(z,&) e Ux U}, ; x €&}
is a submanifold in U x U}, called the m~incidence variety Ied,, (U) ; one has
two projections m; : Ied,,(U) — U and my : Icd,,(U) — U}, ; note that my is
a proper map, so that my allows the push-forward of currents.
Let now Dy,...,Dy, M effective Cartier divisors in P"(C) such that the in-
tersection of the supports of the D;, j = 1,..., M, define a-n — m-pure di-
mensional closed subvariety V' in U ; for any irreducible component V, in V,
let v,(D) the Hilbert-Samuel multiplicity of the ideal (si, ..., sps) generated
by local sections of the D; at a generic smooth point in V.

Following the constructions developped in [13] and [16], a natural definition
for the trace of w on the n — m-analytic cycle

C(D) =) v,(D)V,

would be
Tro(p) [w] :== Z Ve(D) Try, [w],

where
Ty, [w] = (). (7] (@) A |77 (V2)]) -

One way (inspired by [2, 3]) to realize such a trace in terms of homoge-
neous sections Py, ..., Py for the line bundles [Dj] (such that deg P, = D; >
deg Py = D, > ...), is to introduce (in homogeneous coordinates)

~ M n Di1—Dy,
P o= 3 Ajk(Z)‘OlZl> P, j=1,..,m,
k=1 1=0

X Vg (D .
Bpyy = PP ® i1 M
(where coefficients \;;, are taken generic), then to set
VR
m+ ‘P]|2

q)::z

= Izl

mi [ P p;
z /\ l |degﬂl] [||z||dengl‘|

<1< mer<m+M =1 L||2]
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and to express Trgp)|w] as

Trop)[w] = %(m)* ([ﬂ (@2(“‘m‘1)w A OB A OD A \pﬂ _0> .

3 Closed formulaes in the case U = P"(C) and
multivariate residue calculus
Ideas developped in this section (which are more in the spirit of computa-

tional geometry) are inspired by P. Griffiths’s paper [13].

Let us study the particular case where U = P"(C) and Dy, ..., D,, correspond
to divisors defining a complete intersection in P"(C), such that none of the
supports of any component of the D; is included in the hyperplane at infinity.
Let p,; (i, -, Go) i= Pj(1, (1, oy Go) be global sections for the line bundles [D;]
and w be a (g, 0)-rational form in P"(C) (¢ < n —m), of the form

q
1<y <<ig<n hz(C) li\l G, _ EI: hz d(z
g(C) g ’

w =
such that

codim ( () Supp [D;] N {polar set ofw}) =m+1.
7j=1

Let (tjo, ..., tjm)m+1<j<n be local coordinates on G(m,n) about the projective

m-plane {(y,11 =---=(, =0} and

lj(taC) =G — tjo — thkgk, j=m+1,..,n.
k=1

Here, we assume that the projective m-line defined by the f;’s does not inter-

m

sect the intersection of (N Supp [D;] with the polar set of the meromorphic
7j=1

form w.

Let us expand :

/“\ O¢.[l(t, C]

j=m+1
= X > €7 Gl (de[l(t, ) ge Atz p+ ...
JC{;L}_;’;"M (Pm+15---1pq)€40,...,m}2



where €7 = £1, J = {j1, ja, ---» Jq} is considered in increasing order, as well
as {m+1,..,n}\ T =1{k1, s kn-m—q}, P = (Pm+1,---» pq) € {0, ...,m}? and

@it ONge s = N delle, (£, 0)]
o=1
dtj’pi = /q\dtj_”m_r
T=1
Ga: = 1T G-
PjEP,P; 70

The closed expression for the trace of w relatively to the cycle
C(D) =Y v,(D)V,

in terms of multivariate residue calculus is

Tre(p) [w](t) = Z Z €7 X

JC{$+1 ----- 7} (01 5-2Pjq ) €{0;-..,m}4

G A (it O e A A dpi
X Res k=1 dts,. (1)

D1y ---y Pm, lm-}—l(ta C)a tey ln(ta C)

The fact that the Trg(p)[w] is a rational form whenever w is rational can be
viewed in such a context as a consequence of the classical transformation law
in residue calculus.

Let us point out the particular case m = 1 and D = D;,degD = D ; let pbe a
global section of the line bundle [D] in C", that is p € C[(y, ..., (], degp = D
and P be the homogeneization of p ; we assume that the projective line Ly :=
{¢; = -+ = (, = 0} does not meet the intersection of the support of D (that
is the hypersurface {P = 0}) with the polar set of w. Let (¢jo, ..., %jm)2<j<n
be local coordinates on G(1,n) about the projective line Ly and

lj(ta ()= G —tjo—tinCi, j=2,..,n.

If
S b (Q)dGi A - NGy A+ AdGy

9




let H and G be the respective homogeneizations of the polynomials

hi= S (=) 22

and g¢;
k=1 Ik

let also :

(t C aCl + thl

and P(t,-) the homogeneization of j(t,-) respect to the affine variables (.
Formula (1) becomes in this setting, in a neighborhood of Ly in G(1,n),

Trc('p) [CL)]
%cx A-o-AdG | n

N\ dtip,
P(C), la(t Q) oy lu(t, ) | +=2

= (=)t > Res

(PL--an)E{O’l}n_l

(2)
The projective line L; := {l;(t,{) = 0; j = 2, ..., n} intersects the hyperplane
at infinity at the point z; 0o := [0 : 1 : toy -+ : £51] ; it follows then from

the residue formula (on the projective line L;) that the trace Trp [w] equals
also :

Pl dP —DPd
= (—l)n Z ResLt;Zt,oo Z~1 (Z) (ZO p—|—2—|—ma.)(de:}0lj)—degg
(p2,-espn)€{0,1}7—1 P(z)P(t,2)G(2)z

X /\ dtk,pk X (3)

k=2
where |p| = p2 + -+ + p, ; note in particular that Tre(p)[w] = 0 whenever
max(deg hj) < degg—n—1;
this key fact was pointed out by P. Griffiths in [13], section 3.c, when w is of

the particular form
hi(¢)dCa A --- AdG,
o (Q)

(in such a case Tre(pylw] = 0 whenever deghy < degp —n —2).

w =
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As we pointed it out, either the transformation law in multidimensional
residue calculus (starting with the closed expressions (1) or (2)), either
residue theorem on complex lines (starting with the closed expression (3)
in the case m = 1) show that the trace of any (g, 0)-rational form in P"(C)
respect to some n — m-purely dimensional cycle defines a rational form on
the smooth manifold G(m,n) ; the fact that trace preserves rationality is a
result which is known as Abel’s theorem. In fact, it may be used for exam-
ple in the following context (which is in the spirit of Abel’s work), starting
with the principal divisor D in P?(C) defined by the homogeneous irreducible
polynomial
2370 — 423 + go(A)z1 25 + g3(A) 7],

the support of which is an elliptic curve 'y (associated to some lattice A in
C) ; such a curve is analytically diffeomorphic to the complex analytic variety
C/A thanks to the map

C/A—=Ty: z—[1:P(2): P'(2)],

whose inverse is precisely :
pely — / w,
v

where w denotes the rational form dx;/z, and v : [0,1] — P?(C) \ {22 = 0}
is a piecewise-smooth path such that v(0) = [0 : 0 : 1]. The associativity of
the group law on T’y is a consequence of the fact that w A [[4] is a d-closed
current on P?(C) since
d[P(2)]
P'(2)

which is an holomorphic form on C ; so the trace of w (respect to D) is a 0-
closed rational form on P?(C)*, that is identically 0, which implies precisely
the associativity of the group law on I'y. For an introductive presentation
to the deep relation between the concept of trace and Abel’s work, we invite
the reader to consult the exhaustive survey of J. E. Bjork [6].

=dz,

It should be pointed out that it was proved in the analytic context by G.
Henkin and M. Passare in [16] that, whenever U is a m-concave open set in
P"(C), V a closed n — m-dimensional irreducible analytic subset in U, then
the trace of any meromorphic (g, 0) form on V' (that is a (¢, 0) meromorphic
form in some neighborhood of V' in U, with ¢ < n — m) is a meromorphic

9



form on U}, ; when w is holomorphic in U, then Try|w] is holomorphic in
U; . Note that such a result can be transposed to the context of purely

dimensional n — m-cycles
C(D)=> v,(D)V,

in U : if wis a a (g 0)-meromorphic form on Supp [C(D)] (that is in a
neighborhood of Supp [C'(D)] in U) such that

on (Sw(d) aw)

is a O-closed current in U, then Trgpy[w] is an holomorphic (g, 0)-form in
U*

m*

4 About Abel’s theorem and its relation with
tomography

The work of G. Gindikin and G. Henkin [11, 15] is the main source of inspi-
ration for this section. Abel’s theorem is deeply connected with tomography
(one should say in fact tomography of “thin” objets, such as closed ana-
lytic sets). Here again, the notion of incidence manifold (together with the
efficient tool which consists in using Poincaré residue) plays a crucial role.

Let U be some m~concave open subset in IP"(C) containing the m-line

Ly iZ{CmH:“':Cn:O};

let ¢ be a smooth d-closed (n, m)-form in U ; the Abel-Radon transform of ¢
is a (n —m, 0)-holomorphic form on U}, which is defined by the procedure we
will describe below ; we will indicate in fact how such a form is constructed in
a neighborhood W* of L, in U}, (a similar construction could be made about
any m-line in U}}) ; note that the reason why we keep track of homogeneous
coordinates in IP"(C) is that one can expect in the future such construction to
be transposed within the frame of complete simplicial toric varieties, playing
then with homogeneous coordinates as introduced in [9] or used in [12].
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In U x W*, we will consider the semi-meromorphic differential form :

Q.= ([ZO MERICIE Zn]a t]k;] =m+1,...,n,k=0,...,m)
. 1 I
(A afos (T )|) Ao,
N E

where
m
Lt,j = Zj - t]"()Z() - Z t-,kzk s ] =m+ 1, g
k=1
the polar set of such a differential form is the union of the smooth hypersur-

faces
Yi={([z0:--:2a)t); Ltj(2) =0}, j=m+1,..n,

which intersect in a transversal way ; note that Y,,.; N --- NY,, defines
precisely the incidence manifold Ied,,(U) in U x W* ; since Q is d-closed
in (Ux W*)\ {Yins1U---UY,}, one can define the iterated Poincaré residue
of Q (following J. Leray’s construction), which leads to a (n,m) smooth
closed form on the manifold Icd,,(U). Such a form can be expressed (in the
coordinates [z : ... : zp|,t on Icd, (U) in U x W*) as

Resy, o---oResy, ., [Q]

n
— ) . .
- Z Qgﬁm+ls---zpn)([zo ST Zm]’ t) A /\ dtk,ﬂk +-
(Pm+15e9pn)€{0,...,m}9 k=m+1
where the Qg}n%"_, pn) are (m,m)-smooth forms (depending on the homoge-

neous coordinates 2g, ..., z,,) defining (m, m) forms in U ; one can now define
a holomorphic (n — m, 0)-form in W* (which is the Abel-Radon transform of

©) as
ARpfgli= X ([0 ) A di
(bt 10,mle \ €L k=1

where L; denotes the m-subspace of P"(C) defined by the L,;, j = m +
1,...,n.

Now is the relation between the Abel and the Abel-Radon tranform : if

C(D)=) v.(D)V,
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is a n — m analytic cycle in U, and w is a meromorphic (n — m, 0)-form on
the support of C'(D), then the current

Top i =wA (ZJ:VG(D) Vg>

defines a (n, m)-0-closed current in the m-concave open set U’ which is de-
fined as complement (in U) of the union of m-planes in U}, which intersect
the n — m — l-analytic set

Supp(C(D)) N {polar set of w} .

It follows from Dolbeault’s theorem (see for example [14]) that there exists a
smooth d-closed (n, m) form ¢, p in U’ which defines (as a current) the same
cohomology class than T}, p in H™™(U’). The Abel-Radon transform of ¢, p
coincides in (U')}, with the Abel transform of w respect to the analytic cycle
C(D) (the last one is defined as a meromorphic form in U}, note that (U’)*,
is the complement of some analytic hypersurface in U}).

It is important to mention here that in the global setting (when U = P"(C),
D is defined by homogeneous polynomials P, ..., Py, and w is a rational form
in P"(C)), one could use, in order to express ¢,, p and therefore Trg(p)[w] in
terms of the P;’s (following the ideas developped in [2] and [3]) the Levine
form [17] in P*"*'(C) (where the homogeneous coordinates are denoted as
[20: it zpiwy: - wy| =[Z:w)),

1Z — wi® ]

L(Z,w) = —log [ &2
(Z,w) & 2 Tl

x (Y (dd°log | Z — w]]*)* A (dd*log(||Z]* + [lwl*)" ) ,
k=0
where d° := (i/27)(0 — 9)) ; if 7 denotes the map
™ ((CH))? % (€)= (CHD) 2 (Z,w, (Bo, Br) = (BoZ, Bruw)

and ¢ denotes the diagonal in P"(C) xP"(C), one has, in this product variety,
the equality between currents

dd°y +[6] = ©
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where O is a smooth form and

V(Z,w) = /ﬂepw) (L)(Z,w, B);

one may introduce a (n — 1, m — 1) current G defined (formally) as follows :

(G 0)=Sw®) [ Y Zu)re(2)ho(2)
VQO c D(l,n—m—l—l)(Ul)

(such a current can be constructed explicitely from the homogeneous polyno-
mials Pj, ..., Py defining the cycle C'(D), see [3], using for example analytic
continuation techniques). One can check that in U’,

dd‘G + Tw,’D = Pu,D,

where ¢, p is a smooth representant for the cohomology class of T}, p in
H™™(U").

We take the opportunity to notice here how the ideas developped for the
construction of the trace (based on the extensive use of the incidence vari-
ety with its two projections m; and ms) and the construction of normalized
Green currents attached to algebraic cycles in P"(C) (based on the extensive
use of the duplicated space P"(C) x P"(C), together with the Levine form
for the diagonal) are intrinsically similar. The major difference is that trace
constructions are deeply related with residue theory (as shown in the pre-
ceeding sections), that is division theory, while construction of normalized
Green currents deals with intersection theory. This distinction between inter-
section theory (linked with the theory of integration currents) and division
theory (where factorization of integration currents, that is residue theory,
plays a fundamental role) remains indeed the permanent guideline of this
survey talk.

5 About Abel’s inverse theorem
An interesting fact that can be viewed as a consequence of the G.A.G.A

principle [19] in the algebraic case is that Abel’s theorem admits a converse
which can be stated as follows in the analytic setting :
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Théoréme 5.1 (Henkin-Passare) [16] Let U be some m-concave open set
in P"(C) such that Ly = {(py1 = -+ = ¢ = 0} C U, ay,...,aq d dis-
tinct points on the m-plane Ly in P"(C), and V1, ...,Vy d germs of smooth
n—m-manifolds respectively in (P"(C), a),...,(P"(C), aq), defined as smooth
complete intersections

Vi={fin="=fim =0}, fir € Oy

N dfsi A dCnir A=+ A dGa|(az) # 0
k=1

for 3 =1,...,d. Assume that for some choice of germs of (n — m,0)-forms
Y1, ..., Yq respectively at aq, ..., aq, the germ

T

d C i N N dfjr n
2 2 Res k= N dte,
(Pm41;-:pn)€{0;...;m}2 j=1 fjla . f]ma lm—l—l (t, C), ceey ln(t, C) m+1
is a germ of meromorphic form in U}, ; then one can find

e a closed n —m analytic set V in U such that V N Ly = {a4, ...,aq} and
V,CV forj=1,..,d;

e a meromorphic form vy on'V in U such that
Trlw](t) = ¥(t)

in a neighborhood of Ly in U;,.

The proof of this theorem can be reduced in fact to the case m = 1. In the

case U = P"(C), m = 1, one should mention in the same spirit a result by
J. Wood [21] :

Théoréme 5.2 (J. Wood) Let Ly, a1,...,aq, Vi,....,Va, fj = fn, 7 =
1,...,d, as above ; a necessary and sufficient condition in order that there ex-
ists a polynomial p (with degree d) (that can be explicitely constructed) such
that the algebraic hypersurface {p = 0} interpolates the germs V;, j =1,...,d,
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and is such that Ly does intersects the corresponding projective hypersurface
{P =0} only at the points ay, ..., aq, is that the function

J G A dell(E O] A df;
s e [ R Ol

Jj=1 fjal2(t’ C),’l”(t’ C)

is polynomial (with degree at most one) in the variables tag, ..., tay.

Wood’s theorem involves some hypothesis about the trace of a (0, 0)-form
(namely the forme (;) respect to some union of germs of hypersurfaces, while
Abel’s inverse theorem (in the case m = 1) involves some hypothesis about
the trace of some (n — 1,0)-form (namely the form defined near each a; as
1;) respect to some union of germs of hypersurfaces.

The advantage of Wood’s result is that it provides an explicit construction
of the polynomial p in terms of the trace of the form (; ; this is not the case
in the proofs of Abel’s inversion theorem (see [13], when the trace is zero,
[16] when the trace is rational) .

A second motivation to relate Abel’s inverse theorem and Wood’s result is
that it would give some insight about the following natural question : starting
with the hypothesis as in Henkin-Passare’s theorem, what can be said if for
some choice of germs of (n — m, 0)-forms 1)1, ..., ¥y respectively at aq, ..., aq,
the germ

t 5
d Py NN dfjk n
Z ZRes k=1 /\ dti p,

(Pm+1;---;Pn)E{O:---:m}q Jj=1 fjl) e f]m’ lm+1 (t’ C)’ ey ln(t7 C) k=m+1

is a germ in U}, which coefficients at any point z, € U}, are algebraic over
O,, (or are algebraic forms when U = P"(C)) ? Such a question has been
studied by S. Collion in [8].

Even in the case when U = P"(C), d = 1, a; = 0 and V; is defined in a
neighborhood of the origin as

Vii=A{¢G = ¢01(Ces -y Gn) 5 max |(5] < €},

2<j<n

where ¢; is holomorphic in the polydisc A, _1(0; €, ...,€) for e sufficiently
small with ¢1(0) = 0, proving Abel’s inverse theorem (or verifying the validity
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of Wood’s criterion, which is the same) in such a particular situation is not
immediate : it amounts to prove that ¢, is necessarily a linear function when
the trace of some n — 1 non identically zero differential form

wl = 1/)(€2, ) Cn) d§2 ARRRA dg’n
(with % is holomorphic A, 1(0; ¢, ..., €)), namely

<p¢(<2a---a<n) dCl/\ /\an n

t— Z Res /\ dty p,
(p2,....pn)€{0,1}4 Cl - <,01(C2a "'7Cn)7l2(t7 C)a 7ln(t7 C) 2

can be continued as a meromorphic form in G(1,m). The simple ideas de-
velopped in order to prove directly such a result (such as done recently by
Martin Weimann) may be also transposed to the situation a; = --- = aq = 0,
V; being described as
‘/j = {Cl = ij(CZJ 7Cn)’ 221]%}% |C]| S 6}7 .7 = ]-: "'7d7

where ;(0) =0, j =1,...,d and ¢ # ¢; for k # [ ; one can use in this case
Lagrange interpolation formula (see for example section 5 in [20]) in order to
deduce from the existence of a meromorphic form (¢, ..., ()dC A -+ - A dG,
whose trace is rational the fact that the 1;’s are algebraic functions. Of
course, such a situation does not fit with the standard hypothesis for Abel’s

inverse theorem (since the a;’s are all equal) but it deserves to be dealt with
directly.

In the same vein, it seems interesting to caracterize n— 1 differential forms on
G(1,n) (in a neighborhood of Lj) which are obtained through the trace con-
struction from a collection of germs of hypersurfaces V1, ..., Vi (non necesser-
aly smooth) which intersect Ly at respective distinct points a4, ..., a5 and are
such that the projection 0 : ((1,(s,...,(n) € VIU---UV; = ((o,--+, () i
proper. In such a situation, one can prove, using elementary residue theory
and Lagrange interpolation, the following : a m — l-meromorphic germ of
form & (expressed in coordinates (to;,t15), j = 2,...,n) at Ly ~ {t = 0} in
G(1,n) is the trace of a germ of meromorphic form respect to V- = V;U- - -UVj
if and only if there are two polynomials in M (¢)[X],

Ft,X) = t*—o ()X + -+ (—1)%04(t)
H(t,X) = %®)X™ 4+ 471 (1)
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which satisfy the Burgers type equations

F F
Xa— = or (mod F)
Otjo Ot
H H
Xa— = o (mod F)
8tj0 8tj1

and are such that

dX NH(t, X)¥(t, X)
@(t) = Resx ; (4)
F(t, X)

where

n

(L, X) = (F)’((t, X) - itjlgt—F (t, X)) A (dtjo + X dtjn)

=2

(the residue symbol in (4) being a residue symbol in one variable). It remains
a challenge (which has been recently affronted by Martin Weimann, a PHD
student in Bordeaux) to proof that whenever (for fixed d) there exists such a
germ of n — 1 form @ with algebraic coefficients, then all functions o; and +;
involved in a choice of F' and H which fits with (4) may be chosen as germs
of algebraic functions (or, in case @ is rational, that Wood’s criterion with d
germs of hypersurfaces is fulfilled).

Another interesting related question seems the following problem : assume
that ay, ..., a4 are distinct points on the line Ly := {¢; = 0} in C" and that
Vi, ..., V4 are d germs of hypersurface respectively at the points a4, ..., a4 such
that the tangent spaces Tq,(V;), j = 1, ..., d, coincide (along some hyperplane
¢ € (P*(C))*) ; again the situation here does not fit with the hypothesis of
Abel’s inverse theorem since Ly does not intersect transversally the germs
of hypersurfaces V;. Nevertheless, one can introduce the dual germs f/j,
j =1,...,d, which now are smooth germs of hypersurfaces intersecting at &
in (P"(C))* ; can one use projective duality (see the next section) in order
to derive directly Abel’s inverse theorem in such a setting (or some other
formulation for it, which would be precisely the dual formulation of Abel’s
inverse theorem formulated in (P"(C))*) ?
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