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Scheduling parallel jobs

Classic scheduling

A classic job can be executed on at most one processor (machine)
at the same time.

Parallel scheduling

A parallel job can be executed on more than one processor at the
same time.

δj — upper bound on the number of processors that may be used
by job Jj .
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Applications

Parallel computer applications

Reliable computing

Bandwidth allocation
Manufacturing

Printed Circuit Boards
Textile
...
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Types of parallel jobs

Parallel

Malleable

Uniprocessor

Power-of-two

Multiprocessor

Moldable
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Cost of parallelism

Processing speed

The relation between the processing time pj of job Jj and the
number of assigned processors q:

pj(q) = pj/q (Jj is work preserving, no parallelism cost)

pj(q) > pj/q (parallelism costs)

pj(q) = f (q) (particular continuous function)
pj(q) is an arbitrary discrete function of q.
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Problem definition

Notations

2 identical parallel machines: M1 and M2

2 kinds of jobs:

A set A = {A1, A2, . . . , AnA
} of preemptive jobs (δA

j = 1)

A set B = {B1, B2, . . . , BnB
} of malleable jobs (δB

i = 2)

CA
j and CB

i are the completion times of jobs Aj and Bi

pA
j is the processing time of job Aj

pB
i is the processing time of job Bi , pB

i (2) = pB
i /2

The objective is to minimize

nA∑

j=1

CA
j +

nB∑

i=1

CB
i

α|β|γ notation

P2 | var , pj(q) = pj/q, δj |
∑

Cj
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An example

M1

M2

A1

A2

A3A3

A4

B1

B2

B3

B3
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A set of dominant schedules

Definition

We say that a schedule σ is a π-schedule if it has the following
properties:

1 the jobs in A are processed, non-preemptively, in SPT
(Shortest Processing Time) order,

2 the jobs in B are processed, non-preemptively, in SPT order,

3 the jobs in B is completed on 2 machines

4 for every job Bi , there exists at most one job Aj such that
SB

i < CA
j ≤ CB

i .
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π-schedules

Example

M1

M2

A1

A2

A3

A4B1 B2
B3

B4

Properties

A π-schedule is fully described by a sequence of jobs.

Completion time of a job Bi in a π-schedule depends only on
its position in the corresponding sequence.

Completion time of a job Aj in a π-schedule depends only on
its position and on the position of the job in B which is the
last before Aj in the corresponding sequence.
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A dynamic programming algorithm

(i , j , k) denotes the subproblem of scheduling jobs A1, . . . ,Aj

and B1, . . . ,Bi such that Ak is the last job in A such that
CA

k < CB
i .

f (i , j , k) denotes the optimal value of the subproblem (i , j , k).

Since we build π-schedules, there are two possible transitions
from the state (i , j , k):

(i + 1, j , j) (we add Bi+1 at the end of the schedule)
(i , j + 1, k) (we add Aj+1 at the end of the schedule)
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A dynamic programming algorithm

1 f (0, 0, 0) = 0

2 ∀i ∈ {0, . . . , nB}, ∀j ∈ {0, . . . , nA}, ∀k ∈ {0, . . . , j} do:

make transitions from state (i , j , k)
to states (i + 1, j , j) and (i , j + 1, k)

3 return min
0≤k≤nA

f (nA, nB , k)

Theorem

DP finds an optimal π-schedule.

Theorem

The complexity of DP is in O(n2
AnB).
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First dominance property

Lemma

There exists an optimal schedule such that

1 CA
j ≤ CA

j+1, ∀1 ≤ j < nA

2 Aj is not preempted, ∀1 ≤ j ≤ nA

3 CB
i ≤ SB

i+1, ∀1 ≤ i < nB

4 On each of the 2 machines, Bi is not preempted, ∀1 ≤ i ≤ nB
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Properties on A

We prove that

1 CA
j ≤ CA

j+1, ∀1 ≤ j < nA

2 Aj is not preempted, ∀1 ≤ j ≤ nA

M1

M2 AiAi

Ai AjAj

Aj Aj

Ai+1

Ai+2
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Properties on A

We prove that

1 CA
j ≤ CA

j+1, ∀1 ≤ j < nA

2 Aj is not preempted, ∀1 ≤ j ≤ nA

M1

M2 Ai

Ai

AiAj

Aj Ai+1

Ai+2
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Properties on A

We prove that

1 CA
j ≤ CA

j+1, ∀1 ≤ j < nA

2 Aj is not preempted, ∀1 ≤ j ≤ nA

M1

M2 AiAj

Aj Ai+1

Ai+2
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Properties on B

We prove that

CB
i ≤ SB

i+1, ∀1 ≤ i < nB

M1

M2
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Properties on B

We prove that

CB
i ≤ SB

i+1, ∀1 ≤ i < nB

M1

M2

B1
B2

B3

B4 B5

Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov Scheduling malleable jobs to minimize the MFT



Properties on B

We prove that

On each of the 2 machines, Bi is not preempted, ∀1 ≤ i ≤ nB

M1

M2

Aj BiBi
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Properties on B

We prove that

On each of the 2 machines, Bi is not preempted, ∀1 ≤ i ≤ nB

M1

M2

Aj Bi
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A: bad case!

Remains to prove

There exists on optimal schedule in which the jobs in A are started
and completed in SPT order.

M2

M1

Aj

Aj+1
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B : bad case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2

Bi

Bi
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B : Tetris, bad case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2 Bi

Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov Scheduling malleable jobs to minimize the MFT



B : Tetris, bad case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2

Bi

Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov Scheduling malleable jobs to minimize the MFT



B : Tetris, bad case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2 Bi

Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov Scheduling malleable jobs to minimize the MFT



B : Tetris, bad case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2

Bi

Yann Hendel, Wieslaw Kubiak, Ruslan Sadykov Scheduling malleable jobs to minimize the MFT



B : Tetris, bad case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2

Bi
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B : Tetris, good case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2 Bi
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B : Tetris, good case!

Remains to prove

There exists on optimal schedule in which the jobs in B are
completed on 2 machines.

M1

M2

Bi
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Auxiliary observation

Claim

Consider a partial π-schedule in which the first job on M1 is
started not later than the first job on M2. Then, if we decrease the
availability of M1 by δ and increase the availability of M2 by δ, the
cost of the schedule does not increase.

Proof. Case 1

M1

M2
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Auxiliary observation

Claim

Consider a partial π-schedule in which the first job on M1 is
started not later than the first job on M2. Then, if we decrease the
availability of M1 by δ and increase the availability of M2 by δ, the
cost of the schedule does not increase.

Proof. Case 2

M1

M2
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Auxiliary observation

Claim

Consider a partial π-schedule in which the first job on M1 is
started not later than the first job on M2. Then, if we decrease the
availability of M1 by δ and increase the availability of M2 by δ, the
cost of the schedule does not increase.

Proof. Case 2

M1

M2
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The main theorem

Theorem

There exists an optimal π-schedule.

Proof

It is possible to transform an optimal schedule ǫ satisfying the
Lemma and which is not a π-schedule into another optimal
schedule such that

either the completion time of at least one job in B is strictly
decreased while the completion times of other jobs in B are
not increased.

or the number of jobs in A processed in the SPT order is
increased, and the completion times of all jobs in B are not
increased.

Applying this transformation a finite number of times, we can
obtain an optimal π-schedule.
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The main theorem

Theorem

There exists an optimal π-schedule.

Proof

CB
i ↓CB

i ↓

SPT↑

SPT↑

SPT↑

SPT↑
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Proof of the main theorem

Partial schedules of ǫ

Ai = {Aj : j ∈ N, CB
i ≤ CA

j < CB
i+1}, 0 ≤ i ≤ m.

A partial schedule ǫ(i) contains jobs Ai ∪ · · · ∪Am ∪ {Bi , . . . ,Bm}.
∃i : ǫ(i) is not a π-schedule, ǫ(i + 1) is a π-schedule.
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Proof of the main theorem

Partial schedules of ǫ

Ai = {Aj : j ∈ N, CB
i ≤ CA

j < CB
i+1}, 0 ≤ i ≤ m.

A partial schedule ǫ(i) contains jobs Ai ∪ · · · ∪Am ∪ {Bi , . . . ,Bm}.
∃i : ǫ(i) is not a π-schedule, ǫ(i + 1) is a π-schedule.

Case 1.1

Ai is not in SPT order

Ai

Ai

Bi+1

Bi+1

Bi

Bi
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Proof of the main theorem

Partial schedules of ǫ

Ai = {Aj : j ∈ N, CB
i ≤ CA

j < CB
i+1}, 0 ≤ i ≤ m.

A partial schedule ǫ(i) contains jobs Ai ∪ · · · ∪Am ∪ {Bi , . . . ,Bm}.
∃i : ǫ(i) is not a π-schedule, ǫ(i + 1) is a π-schedule.

Case 1.2

Ai is not in SPT order

Ai

Ai
Bi+1

Bi+1Bi

Bi

+δ

−δ

Ω

Ω
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Proof of the main theorem

Partial schedules of ǫ

Ai = {Aj : j ∈ N, CB
i ≤ CA

j < CB
i+1}, 0 ≤ i ≤ m.

A partial schedule ǫ(i) contains jobs Ai ∪ · · · ∪Am ∪ {Bi , . . . ,Bm}.
∃i : ǫ(i) is not a π-schedule, ǫ(i + 1) is a π-schedule.

Case 2

Ai is in SPT order, Bi is completed on one machine

Aj

AjAj

Aj Bi

Bi

Bi

Bi

+δ +δ

−δ−δ

ΩΩ

Ω Ω
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Proof of the main theorem

Partial schedules of ǫ

Ai = {Aj : j ∈ N, CB
i ≤ CA

j < CB
i+1}, 0 ≤ i ≤ m.

A partial schedule ǫ(i) contains jobs Ai ∪ · · · ∪Am ∪ {Bi , . . . ,Bm}.
∃i : ǫ(i) is not a π-schedule, ǫ(i + 1) is a π-schedule.

Case 3

Ai is in SPT order, Bi is completed on two machines

Aj

Aj

Aj−1

Aj−1

Bi

Bi
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The general case with m machines: “Ascending property”

Theorem

For each instance of the problem
P | var , pj(q) = pj/q, δj |

∑
wjCj there exists an optimal

schedule in which once a processor is assigned to a job, it remains
assigned to this job until the job is completed (the number of
processors assigned to a job cannot decrease over time while the
job is not completed )

Example

M1

M2

M3

M4
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The case with 3 machines

The simplest open case

P3 | var , pj(q) = pj/q, δj ∈ {1, 3} |
∑

Cj

π-schedules

1 the jobs in A are processed, non-preemptively, in SPT order

2 the jobs in B are processed, non-preemptively, in SPT order

3 for every job Bi , there exists at most one job Aj such that
SB

i < CA
j ≤ CB

i

4 the jobs of B is completed on 3 machines
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The case with 3 machines

The simplest open case

P3 | var , pj(q) = pj/q, δj ∈ {1, 3} |
∑

Cj

π-schedules

1 the jobs in A are processed, non-preemptively, in SPT order

2 the jobs in B are processed, non-preemptively, in SPT order

3 for every job Bi , there exists at most one job Aj such that
SB

i < CA
j ≤ CB

i

4 the jobs of B is completed on 3 machines

M1

M2

M3 A1

B1
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The case with 3 machines

The simplest open case

P3 | var , pj(q) = pj/q, δj ∈ {1, 3} |
∑

Cj

π-schedules

1 the jobs in A are processed, non-preemptively, in SPT order

2 the jobs in B are processed, non-preemptively, in SPT order

3 for every job Bi , there exists at most one job Aj such that
SB

i < CA
j ≤ CB

i

4 the jobs of B is completed on the 3 machines
The completion time of a job in a π-schedule depends now on
the positions of all the preceding jobs in the corresponding
sequence.
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The end of the talk

Questions?
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