
Column Generation based Primal Heuristics

Cédric Joncour(1), Sophie Michel (2), Ruslan Sadykov (3,1),
Dimitri Sverdlov (3,1), François Vanderbeck (1,3)

(1) Université Bordeaux 1, Institut de Mathématiques
(2) Institut supérieur d’études logistiques- Université du Havre

(3) INRIA Bordeaux, équipe RealOpt

Abstract

In the past decade, significant progress has been achieved in developing generic pri-
mal heuristics that made their way into commercial mixed integer programming
(MIP) solver. Extensions to the context of a column generation solution approach
are not straightforward. The Dantzig-Wolfe decomposition principle can indeed be
exploited in greedy, local search, rounding or truncated exact methods. The price
coordination mechanism can bring a global view that may be lacking in some “my-
opic” approaches based on a compact formulation. However, the dynamic generation
of variables requires specific adaptation of heuristic paradigms. The column gen-
eration literature reports many application specific studies where primal heuristics
are a key to success. There remains to extract generic methods that could be seen
as black-box primal heuristics for use across applications. In this paper we review
generic classes of column generation based primal heuristics. We then focus on
a so-called “diving” method in which we introduce diversification based on Limited
Discrepancy Search. While being a general purpose approach, the implementation of
our heuristic illustrates the technicalities specific to column generation. The method
is numerically tested on variants of the cutting stock and vehicle routing problems.

Keywords: Primal Heuristic, Column Generation.

1 Introduction

Heuristics are algorithms that attempts to derive “good” primal feasible so-
lutions to a combinatorial optimization problem. They include constructive
methods that build a solution and improvement methods such as local search

procedure that starts with an incumbent. The term “primal heuristic” gen-
erally refers to methods based on the tools of exact optimization, truncating
an exact procedure or constructing solutions from the relaxation on which the
exact approach relies: techniques range from greedy constructive procedures
to rounding a solution of the linear programming (LP) relaxation, using the
LP solution to define a target, or simply exploiting dual information for pric-
ing choices. Alternatively, exact solvers can be used as subroutines in building
heuristic solutions, for instance to explore a neighborhood in a local search
procedure. Today’s MIP solvers rely heavily on generic primal heuristics: high
quality primal values help pruning the enumeration by bound and preprocess-
ing; they are also essential in tackling large scale real-life applications where
the exact solver is given limited running time.

Heuristics based on exact methods have found a new breath in the recent
literature. The latest developments are reviewed in [5]. Let us just mention
a few landmarks: the Large Scale Neighborhood Search [3] , the Relaxation
Induced Neighborhood Search [10] , the local branching heuristic [15] , the fea-
sibility pump algorithm [1,14] . Meta-heuristic paradigms such as oscillation
between intensification and diversification of the search, and use of histori-
cal memory have also inspired progress in primal heuristics. Recently such
work has been extended from the context of binary integer programs to gen-
eral integer programs. Our purpose is to examine possible extensions to the
case where one works with a Dantzig-Wolfe reformulation of the problem in-
volving an exponential number of columns. The above mentioned landmark
heuristics have not been applied directly to the Dantzig-Wolfe reformulation
because setting bounds on column values can hardly been implemented in
a context of dynamic column generation (the pricing problem ignores such
bounds; modifying it to enforce such bounds typically induces an harder to
solve subproblem). Alternatively, one could potentially develop an implemen-
tation of classic primal heuristics based on projecting the master solution in
the original variable space. But there are no bijective projection in some appli-
cations. Here, we consider how one can develop constructive or improvement
heuristics specifically for the column generation context.

2 An overview of column generation based heuristics

Assume a mixed integer program (IP):

[P] min{cx : Ax ≥ a,Bx ≥ b, x ∈ Rn
+ × Zp

+︸ ︷︷ ︸
x∈X

}

where a subset of constraints Bx ≥ b defines a subsystem X over which opti-
mization is “relatively easy” while Ax ≥ a represent “complicating constraints”.
For many structured applications, Bx ≥ b has a block diagonal structure with
identical blocks. The structure of [P] can exploited by reformulating it as a
master program:

[M] min{
∑
g∈G

(cxg)λg :
∑
g∈G

(Axg)λg ≥ a;
∑
g∈G

λg = K ∀k; λg ∈ N ∀g}

where G is the set of generators of X and K is the number of identical blocks
in Bx ≥ b. We assume a bounded subsystem, thus G is an enumeration of the
feasible solutions to X, i.e. X = {xg}g∈G. |G| is typically exponential in the
input size. Reformulation [M] is solved by branch-and-price: at each node of
the branch-and-bound tree the linear relaxation of [M] is solved by column
generation with a pricing problem of the form: minx∈X{(c− πA) x}, where π
is the dual solution associated with constraints Ax ≥ a in [M].

The most commonly used generic primal heuristic in this column genera-
tion context is the so-called restricted master heuristic. The column generation
formulation is restricted to a subset of generators G and associated variables,
and it is solved as a static IP. The restricted set G can either be generated
heuristically, or be made of the columns generated during the master LP so-
lution, or a mixture of both. The main drawback of this approach is that the
resulting restricted master integer problem is often infeasible (the columns of
G – typically defined by the LP solution – may not be combined to an integer
solution). In an application specific context, an ad-hoc recourse can be de-
signed to “repair” infeasibility. Such implementation has been developed for
network design [7], vehicle routing [2,8,26] and delivery [25] problems.

Simple greedy heuristic strategies have also been used: one iteratively adds
a greedy selected column (the one with the best so-called “pseudo-cost”) to
the partial solution until feasibility is reached. Column selection criteria can
make use of the pricing procedure: for instance selecting columns that have the
smallest ratio of reduced cost per unit of constraint satisfaction (based on dual
price estimates that can be re-evaluated in the course of the algorithm). One
can also use the master LP solution as a base for column selection. This gives
rise to so-called rounding heuristics. A standard rounding strategy for the
common set covering type master formulation consists of 3 steps: (i) an initial
partial solution is obtained by rounding downwards the master LP solution,
(ii) columns whose LP values are closest to their rounded part are then consid-
ered for round up while feasible, (iii) an ad-hoc constructive procedure is used
to complete the solution. Local search can be used to improve the solutions
while implementing some form of diversification. Typically one will remove

some of the columns selected in the primal solution and reconstruct a solution
with one of the above techniques. Greedy and rounding heuristics (sometimes
coupled with local search) have been used successfully applied [4,6,9,12,23,24]
(on cutting stock, planning, and vehicle routing problems). However, reach-
ing feasibility remains a difficult issue that is often handled in an application
specific manner along with greedy selection of columns, rounding directions
or neighborhood definition. Deriving general purpose approaches is difficult.
A generic way to complete a partial solution in search for feasibility is to gen-
erate further columns through pricing. This is precisely the strength of diving
heuristics.

3 Diving heuristics

A diving heuristic is a depth-first heuristic search in the branch-and-price tree.
At each node, a branch is heuristically selected based on greedy or rounding
strategies. After branching the master LP is re-optimized (exactly or approx-
imately). The branching rule used in such context is typically quite different
from the one used in an exact approach: in a diving heuristic, one is not con-
cerned with balancing the tree and one can overcome issues of variable fixing
that are not compatible with column generation. Generating new columns
in the process of re-optimization is an important feature for the success of
the approach as it allow to construct feasible solutions. Observe that fixing a
partial solution does not impair column generation: the residual master can
be tackled in the same way as the original master LP as no specific bounds on
master variables have been set. In particular, columns previously selected in
the partial solution remain in the formulation and may be selected again at a
further stage.

Diving heuristics admit many possible implementation variants as illus-
trated in previous application specific studies: they were used on vehicle
routing [18,22], crew rostering [17,16], cutting stock [11,23], and lot-sizing
[11] problems. A key feature is the column selection mode that drives the
heuristic: using greedy, random or rounding strategies (rounding down, up,
to the closest integer, or based on a threshold [11,16,18,22]). Note that sev-
eral columns can be taken into the solution simultaneously, and a constructive
heuristic can be applied in an attempt to complete the solution an any stage
[4,21]. A template of such diving procedure is given in Table 1.

In our implementation, columns are selected one at the time in Step 2, se-
lecting in the current master LP solution the λg variable value closest to integer
(among roundings that are feasible for the master program). The selected col-

Table 1
Depth first search diving heuristic

Algorithm 1
Step 1: Solve the current master LP.
Step 2: Select columns into the current solution at heuristically set values.
Step 3: If the partial solution defines a complete primal solution, record this
solution and goto Step 6.

Step 4: Update the master (right hand side) and the pricing problems (setting
new bounds on subproblem variables to generate proper columns).

Step 5: If residual master problem is shown infeasible through preprocessing,
goto Step 6. Else, return to Step 1.

Step 6: Stop.

umn g is taken in the solution at a value equal to the closest integer to λg.
An original feature not found in the above mentioned references is a limited
backtracking that implements a diversification mechanism. The solution ob-
tained through the initial depth-first exploration of the tree is considered as a
reference solution around which we implement a Limited Discrepancy Search
(LDS) [19]. The latter is controlled by two parameters: maxDepth and
maxDiscrepancy: up to depth maxDepth, we considered to deviate from
the reference solution in up maxDiscrepancy ways. Specifically, in Step 2,
we avoid selecting columns present in a tabu list (of size ≤maxDiscrepancy)
that consists of column selected in previous branches from which we wish to
diversify the search. In step 6, we backtrack, while the current depth is greater
than maxDepth or the current Discrepancy level = maxDiscrepancy. If
such backtracking is not possible, we stop. Otherwise, we create a new branch
defined by a tabu list made of columns that were tabu at the ancestor node
or were selected in previous child nodes of the ancestor node. The resulting
exploration tree is illustrated in Figure 1 for two parameter settings.

4 Computational results

We have build our diving heuristic into BaPCod [27], a generic Branch-and-
Price Code that we developed. To test its usefulness, we compare the exact
branch-and-price algorithm with and without the use of the primal heuristic at
the root node, and the use of the diving heuristic only. Table 2 presents com-
putational results on standard instances for the cutting stock problem (CSP)
[28], bin packing problem with conflicts (BPWC) [13] (only “hard instances”

(a) maxDepth = 3,
maxDiscrepancy = 1

(b) maxDepth = 2,
maxDiscrepancy = 2

Fig. 1. Illustration of a tree search with bounded depth and discrepancy

with the conflict graph density of 10–40%), the graph vertex coloring problem
(VCP) and classical vehicle routing problem (VRP) using the Instances A of
[20]. For maxDepth = 3 and maxDiscrepancy = 2, Table 2 reports the
problem class, the instances size, the number of instances tested (#inst.), the
number of unsolved instances within 30 minutes (#unsolv.), the average size
of the branch-and-price tree (#nodes, using the branching scheme of [29]), the
average solution time (in seconds). For the pure heuristic (DH only), we report
the number of instances for which the solution found is optimal (#solv.) and
the average gap of the solution found with the optimum (even when there is
no such gap, there still can be a gap with the column generation dual bound).

Table 2
Comparing branch-and-price with and without our diving heuristic (DH).

pure B-a-P DH + B-a-P DH only

problem size #inst. #unsolv. #nodes time #unsolv. #nodes time #solv. gap time

CSP 50 10 0 245 26 10 0% 2

CSP 80 10 0 417 192 10 0% 14

BPWC 60–500 280 9 148 167 0 2.9 102 278 0.02% 75

VCP 11–211 18 0 17 116 0 1.2 34 18 0% 26

VRP An32-80 27 10 5.25% 70

References

[1] Tobias Achterberg and Timo Berthold. Improving the feasibility pump. Discrete
Optim., 4(1):77–86, 2007.

[2] Y. Agarwal, K. Mathur, and H. M. Salkin. A set-partitioning-based exact
algorithm for the vehicle routing problem. Networks, 19(7):731–749, 1989.

[3] Ravindra K. Ahuja, Özlem Ergun, James B. Orlin, and Abraham P. Punnen. A
survey of very large-scale neighborhood search techniques. Discrete Appl. Math.,
123(1-3):75–102, 2002. Workshop on Discrete Optimization, DO’99 (Piscataway,
NJ).

[4] G. Belov and G. Scheithauer. A cutting plane algorithm for the one-dimensional
cutting stock problem with multiple stock lengths. European J. Oper. Res.,
141(2):274–294, 2002. Cutting and packing.

[5] Timo Berthold. Primal Heuristics for Mixed Integer Programs. Master’s thesis,
Technische Universität Berlin, 2006.

[6] A. Ceselli, G. Righini, and M. Salani. A column generation algorithm for a
vehicle routing problem with economies of scale and additional constraints. In
Proceedings TRISTAN, Phuket, Thailand, june 2007.

[7] A. Chabrier. Heuristic branch-and-price-and-cut to solve a network design
problem. In Proceedings CPAIOR, Montreal, Canada, may 2003.

[8] A. Chabrier, E. Danna, and C. Le Pape. Coopération entre génération de
colonnes et recherche locale appliquées au problème de routage de véhicules.
In Huitièmes Journées Nationales sur la résolution de Problèmes NP-Complets
(JNPC), pages 83–97, Nice, France, may 2002.

[9] François-Luc Cimelière. Optimisation du traitement de l’ordre de fabrication
dans l’industrie textile. PhD thesis, Université Bordeaux 1, France, 2004.

[10] Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation
induced neighborhoods to improve MIP solutions. Math. Program., 102(1, Ser.
A):71–90, 2005.

[11] Zeger Degraeve and Raf Jans. A new Dantzig-Wolfe reformulation and branch-
and-price algorithm for the capacitated lot-sizing problem with setup times.
Oper. Res., 55(5):909–920, 2007.

[12] Gregory Dobson. Worst-case analysis of greedy heuristics for integer
programming with nonnegative data. Math. Oper. Res., 7(4):515–531, 1982.

[13] Albert E. Fernandes Muritiba, Manuel Iori, Enrico Malaguti, and Paolo Toth.
Algorithms for the bin packing problem with conflicts. INFORMS Journal on
Computing, page ijoc.1090.0355, 2009.

[14] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Math.
Program., 104(1, Ser. A):91–104, 2005.

[15] Matteo Fischetti and Andrea Lodi. Local branching. Math. Program., 98(1-3,
Ser. B):23–47, 2003. Integer programming (Pittsburgh, PA, 2002).

[16] Michel Gamache, François Soumis, Gérald Marquis, and Jacques Desrosiers. A
column generation approach for large-scale aircrew rostering problems. Oper.
Res., 47(2):247–263, 1999.

[17] Martin Grötschel, Ralf Borndörfer, and Andreas Löbel. Duty scheduling in
public transit. Jäger, Willi (ed.) et al., Mathematics—key technology for the
future. Joint projects between universities and industry. Berlin: Springer. 653-
674 (2003)., 2003.

[18] Oktay Gunluk, Tracy Kimbrel, Laszlo Ladanyi, Baruch Schieber, and Gregory B.
Sorkin. Vehicle Routing and Staffing for Sedan Service. Transportation Science,
40(3):313–326, 2006.

[19] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In
Proc. IJCAI-95, Montreal, Quebec, pages 607–613. Morgan Kaufmann, 1995.

[20] CVRP Instances. http://neo.lcc.uma.es/radi-aeb/webvrp/.

[21] Krzysztof C. Kiwiel. An Inexact Bundle Approach to Cutting-Stock Problems.
INFORMS Journal on Computing, page ijoc.1090.0326, 2009.

[22] Sophie Michel. Optimisation des tournées de véhicules combinées à la gestion
de stock. PhD thesis, Université Bordeaux 1, France, 2006.

[23] Nancy Perrot. Integer Programming Column Generation Strategies for the
Cutting Stock Problem and its Variants. PhD thesis, Université Bordeaux 1,
France, 2005.

[24] J. Sadki, L. Alfandari, A. Nagih, and A. Plateau. Approximation de problèmes
de couverture de tâches en transport ferrovière. In JPOC5, Rouen, France, june
2008.

[25] V. Schmid, K. F. Doerner, R. F. Hartl, M. W. P. Savelsbergh, and W. Stoecher.
An effective heuristic for ready mixed concrete delivery. In Proceedings
TRISTAN, Phuket, Thailand, June 2007.

[26] É. D. Taillard. A heuristic column generation method for the heterogeneous
fleet VRP. RO Oper. Res., 33(1):1–14, 1999.

[27] F. Vanderbeck. Bapcod - a generic branch-and-price code, 2008.
http://wiki.bordeaux.inria.fr/realopt/.

[28] François Vanderbeck. Computational study of a column generation algorithm
for bin packing and cutting stock problems. Math. Program., 86(3, Ser. A):565–
594, 1999.

[29] François Vanderbeck. Branching in branch-and-price: a generic scheme.
Mathematical Programming, 2010. doi 10.1007/s10107-009-0334-1.

	Introduction
	An overview of column generation based heuristics
	Diving heuristics
	Computational results
	References

