Approximation of the MHD equations in heterogeneous domains using Lagrange finite elements.

A. Bonito, J.-L. Guermond, R. Laguerre, J. Léorat, F. Luddens, C. Nore, A. Ribeiro

Dec. 8, 2010

OUTLINE

(1) MHD problem
2) Heterogeneous and/or singular domains
(3) Numerical simulations
4) Back to MHD

OUTLINE

2) Heterogeneous and/or singular domains

3 Numerical simulations

4. Back to MHD

Dynamo effect

Dynamo effect: "generation of a non vanishing magnetic field by a moving ferromagnetic fluid".

- Moving incompressible fluid \rightsquigarrow Navier-Stokes equations:

$$
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}-R_{e}^{-1} \Delta \mathbf{u}+\nabla p=(\nabla \times \mathbf{H}) \times \mu \mathbf{H}
$$

- Ferromagnetic fluid \rightsquigarrow Maxwell equations:

$$
\begin{aligned}
\mu \partial_{t} \mathbf{H}+\nabla \times \mathbf{E} & =0 \\
\nabla \times \mathbf{H} & =R_{m} \sigma(\mathbf{E}+\mathbf{u} \times \mu \mathbf{H})+\mathbf{j}^{s}
\end{aligned}
$$

Van Kármán Sodium Experiment

Numerical Analysis Seminar

Generic axisymmetric domain

Numerical Analysis Seminar
$\left\{\begin{array}{cccc}\mu \partial_{t} \mathbf{H} & = & -\nabla \times \mathbf{E} & \text { in } \Omega \\ \nabla \times \mathbf{H} & = & R_{m} \sigma(\mathbf{E}+\mathbf{u} \times \mu \mathbf{H})+\mathbf{j}^{s} & \text { in } \Omega_{c} \\ \nabla \times \mathbf{H} & = & 0 & \text { in } \Omega_{v} \\ \nabla \cdot \mathbf{E} & = & 0 & \text { in } \Omega_{v} \\ \mathbf{H}^{c} \times \mathbf{n}^{c}+\mathbf{H}^{v} \times \mathbf{n}^{v} & = & 0 & \text { on } \Sigma \\ \mathbf{E}^{c} \times \mathbf{n}^{c}+\mathbf{E}^{v} \times \mathbf{n}^{v} & = & 0 & \text { on } \Sigma \\ \mathbb{H}] \times \mathbf{n} & = & 0 & \text { on } \Sigma_{\mu} \\ {[\mathbf{E}] \times \mathbf{n}} & = & 0 & \text { on } \Sigma_{\mu} \\ \mathbf{E} \times \mathbf{n} & = & \mathbf{a} & \text { on } \Gamma\end{array}\right.$
$\left\{\begin{array}{cccl}\mu \partial_{t} \mathbf{H} & = & -\nabla \times \mathbf{E} & \text { in } \Omega \\ \nabla \times \mathbf{H} & = & R_{m} \sigma(\mathbf{E}+\mathbf{u} \times \mu \mathbf{H})+\mathbf{j}^{s} & \text { in } \Omega_{c} \\ \nabla \times \mathbf{H} & = & 0 & \text { in } \Omega_{v} \\ \nabla \cdot \mathbf{E} & = & 0 & \text { in } \Omega_{v} \\ \mathbf{H}^{c} \times \mathbf{n}^{c}+\mathbf{H}^{v} \times \mathbf{n}^{v} & = & 0 & \text { on } \Sigma \\ \mathbf{E}^{c} \times \mathbf{n}^{c}+\mathbf{E}^{v} \times \mathbf{n}^{v} & = & 0 & \text { on } \Sigma \\ \llbracket \mathbf{H} \rrbracket \times \mathbf{n} & = & 0 & \text { on } \Sigma_{\mu} \\ \llbracket \mathbf{E}] \times \mathbf{n} & = & 0 & \text { on } \Sigma_{\mu} \\ \mathbf{E} \times \mathbf{n} & = & \mathbf{a} & \text { on } \Gamma\end{array}\right.$
$\begin{array}{cc}\text { H: magnetic field } & \mathbf{j}^{s}: \text { current } \\ \text { E : electric field } & \mathbf{u}: \text { velocity } \\ & + \text { boundary conditions } \\ & + \text { initial data }\end{array}$
R_{m} : magnetic Reynolds number
σ : Conductivity
μ : Permeability

Reducing the number of unknowns

- Eliminate E^{c} using Ampère's equation.

Reducing the number of unknowns

- Eliminate E^{C} using Ampère's equation.
- Assuming Ω_{v} is simply-connected, replace \mathbf{H}^{v} by $\nabla \phi$.

Reducing the number of unknowns

- Eliminate E^{c} using Ampère's equation.
- Assuming Ω_{v} is simply-connected, replace \mathbf{H}^{v} by $\nabla \phi$.
- Eliminate E^{\vee} using the continuity equations.

Reducing the number of unknowns

- Eliminate E^{C} using Ampère's equation.
- Assuming Ω_{v} is simply-connected, replace \mathbf{H}^{v} by $\nabla \phi$.
- Eliminate E^{\vee} using the continuity equations.

Functional framework

$$
\begin{aligned}
\mathbf{L} & =\left\{(\mathbf{b}, \psi) \in \mathbf{L}^{2}\left(\Omega_{c}\right) \times H_{\int=0}^{1}\left(\Omega_{v}\right)\right\} \\
\mathbf{X} & =\left\{(\mathbf{b}, \psi) \in \mathbf{H}_{\mathrm{curl}}\left(\Omega_{c}\right) \times H_{\int=0}^{1} ;\left(\mathbf{b} \times \mathbf{n}^{c}+\nabla \psi \times \mathbf{n}^{v}\right)_{\mid \Sigma}=0\right\}
\end{aligned}
$$

$$
\left(\mu^{v} \partial_{t} \nabla \phi, \nabla \psi\right)_{\Omega_{v}}=-\left(\nabla \times \mathbf{E}^{v}, \nabla \psi\right)_{\Omega_{v}}
$$

$$
\begin{aligned}
\left(\mu^{v} \partial_{t} \nabla \phi, \nabla \psi\right)_{\Omega_{v}} & =-\left(\nabla \times \mathbf{E}^{v}, \nabla \psi\right)_{\Omega_{v}} \\
& =\left(\mathbf{E}^{v} \times \mathbf{n}^{v}, \nabla \psi\right)_{\Sigma}+\left(\mathbf{E}^{v} \times \mathbf{n}^{v}, \nabla \psi\right)_{\Gamma_{v}}
\end{aligned}
$$

$$
\begin{aligned}
\left(\mu^{v} \partial_{t} \nabla \phi, \nabla \psi\right)_{\Omega_{v}} & =-\left(\nabla \times \mathbf{E}^{v}, \nabla \psi\right)_{\Omega_{v}} \\
& =\left(\mathbf{E}^{v} \times \mathbf{n}^{v}, \nabla \psi\right)_{\Sigma}+\left(\mathbf{E}^{v} \times \mathbf{n}^{v}, \nabla \psi\right)_{\Gamma_{v}} \\
& =-\left(\mathbf{E}^{c}, \nabla \psi \times \mathbf{n}^{v}\right)_{\Sigma}+(\mathbf{a}, \nabla \psi)_{\Gamma_{v}}
\end{aligned}
$$

$$
\begin{aligned}
\left(\mu^{v} \partial_{t} \nabla \phi, \nabla \psi\right)_{\Omega_{v}} & =-\left(\nabla \times \mathbf{E}^{v}, \nabla \psi\right)_{\Omega_{v}} \\
& =\left(\mathbf{E}^{v} \times \mathbf{n}^{v}, \nabla \psi\right)_{\Sigma}+\left(\mathbf{E}^{v} \times \mathbf{n}^{v}, \nabla \psi\right)_{\Gamma_{v}} \\
& =-\left(\mathbf{E}^{c}, \nabla \psi \times \mathbf{n}^{v}\right)_{\Sigma}+(\mathbf{a}, \nabla \psi)_{\Gamma_{v}} \\
\left(\mu^{c} \partial_{t} \mathbf{H}^{c}, \mathbf{b}\right)_{\Omega_{v}} & =-\left(\mathbf{E}^{c}, \mathbf{b}\right)_{\Omega_{c}}+\left(\mathbf{E}^{c} \times \mathbf{n}^{c}, \mathbf{b}\right)_{\Gamma_{c}} \\
& -\left(\left\{\mathbf{E}^{c}\right\},[\mathbf{b}] \times \mathbf{n}\right)_{\Sigma_{\mu}}-\left(\mathbf{E}^{c}, \mathbf{b} \times \mathbf{n}^{c}\right)_{\Gamma_{c}}
\end{aligned}
$$

and then get rid of $\mathbf{E}^{\mathbf{c}}$

IP method

$$
\begin{aligned}
& \left(\mu^{c} \partial_{t} \mathbf{H}^{c}, \mathbf{b}\right)_{\Omega_{c}}+\left(\mu^{v} \partial_{t} \nabla \phi, \nabla \psi\right)_{\Omega_{v}} \\
+ & \left(\left(R_{m} \sigma\right)^{-1} \nabla \times \mathbf{H}^{c}-\mathbf{u} \times \mu^{c} \mathbf{H}^{c}, \nabla \times \mathbf{b}\right)_{\Omega_{c}} \\
+ & \left(\left(R_{m} \sigma\right)^{-1} \nabla \times \mathbf{H}^{c}-\mathbf{u} \times \mu^{c} \mathbf{H}^{c}, \mathbf{b} \times \mathbf{n}^{c}+\nabla \psi \times \mathbf{n}^{v}\right)_{\Sigma} \\
+ & \left(\left\{\left(R_{m} \sigma\right)^{-1} \nabla \times \mathbf{H}^{c}-\mathbf{u} \times \mu^{c} \mathbf{H}^{c}\right\}, \llbracket \mathbf{b} \rrbracket \times \mathbf{n}\right)_{\Sigma_{\mu}} \\
= & \ell(\mathbf{b}, \psi)
\end{aligned}
$$

IP method

$$
\begin{aligned}
& \left(\mu^{c} \partial_{t} \mathbf{H}^{c}, \mathbf{b}\right)_{\Omega_{c}}+\left(\mu^{v} \partial_{t} \nabla \phi, \nabla \psi\right)_{\Omega_{v}} \\
+ & \left(\left(R_{m} \sigma\right)^{-1} \nabla \times \mathbf{H}^{c}-\mathbf{u} \times \mu^{c} \mathbf{H}^{c}, \nabla \times \mathbf{b}\right)_{\Omega_{c}} \\
+ & \left(\left(R_{m} \sigma\right)^{-1} \nabla \times \mathbf{H}^{c}-\mathbf{u} \times \mu^{c} \mathbf{H}^{c}, \mathbf{b} \times \mathbf{n}^{c}+\nabla \psi \times \mathbf{n}^{v}\right)_{\Sigma} \\
+ & \left(\left\{\left(R_{m} \sigma\right)^{-1} \nabla \times \mathbf{H}^{c}-\mathbf{u} \times \mu^{c} \mathbf{H}^{c}\right\}, \llbracket \mathbf{b} \rrbracket \times \mathbf{n}\right)_{\Sigma_{\mu}} \\
+ & h^{-1}\left(\mathbf{H}^{c} \times \mathbf{n}^{c}+\nabla \phi \times \mathbf{n}^{v}, \mathbf{b} \times \mathbf{n}^{c}+\nabla \psi \times \mathbf{n}^{v}\right)_{\Sigma} \\
+ & h^{-1}\left(\llbracket \mathbf{H}^{c} \rrbracket \times \mathbf{n}, \llbracket \mathbf{b} \rrbracket \times \mathbf{n}\right)_{\Sigma_{\mu}} \\
= & \ell(\mathbf{b}, \psi)
\end{aligned}
$$

SFEMaNS

Spectra/Finite Element for Maxwell and Navier-Stokes equations: F90 code developed since 2002 by J.-L. Guermond, C. Nore, J. Léorat, R. Laguerre, A. Ribeiro and F.L.

- takes advantage of the cylindrical symmetry,
- Fourier decomposition in the azimuthal direction,
- Lagrange Finite Element solver in meridian plane,
- \rightsquigarrow smaller systems,
- divergence of $\mu \mathbf{H}$ used to be stabilized in L^{2}.

Aim: improve it to correctly solve problems involving eigenvalues, piecewise smooth permeability and/or geometrical singularities.

OUTLINE

(1) MHD problem

2) Heterogeneous and/or singular domains

(3) Numerical simulations

4. Back to MHD

Eigenvalue problem
For non-smooth μ (e.g. piecewise constant), find λ, E s.t.

$$
\begin{aligned}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mu \mathbf{E} & & \text { in } \Omega, \\
\nabla \cdot(\mu \mathbf{E}) & =0 & & \text { in } \Omega, \\
\mathbf{E} \times \mathbf{n} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Eigenvalue problem
For non-smooth μ (e.g. piecewise constant), find λ, \mathbf{E} s.t.

$$
\begin{aligned}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mu \mathbf{E} & & \text { in } \Omega, \\
\nabla \cdot(\mu \mathbf{E}) & =0 & & \text { in } \Omega, \\
\mathbf{E} \times \mathbf{n} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Requirements

- use Lagrange finite element

Eigenvalue problem
For non-smooth μ (e.g. piecewise constant), find λ, \mathbf{E} s.t.

$$
\begin{aligned}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mu \mathbf{E} & & \text { in } \Omega, \\
\nabla \cdot(\mu \mathbf{E}) & =0 & & \text { in } \Omega, \\
\mathbf{E} \times \mathbf{n} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Requirements

- use Lagrange finite element
- use low order polynomials

Eigenvalue problem
For non-smooth μ (e.g. piecewise constant), find λ, E s.t.

$$
\begin{aligned}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mu \mathbf{E} & & \text { in } \Omega, \\
\nabla \cdot(\mu \mathbf{E}) & =0 & & \text { in } \Omega, \\
\mathbf{E} \times \mathbf{n} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Requirements

- use Lagrange finite element
- use low order polynomials
- use as less as possible information about Ω

Boundary value problem

First consider, for $\mathbf{E} \in \mathbf{H}$ the following

$$
\left\{\begin{array}{l}
\text { find } \mathbf{F} \in \mathbf{X} \text { such that } \\
\nabla \times \nabla \times \mathbf{F}=\mu \mathbf{E}
\end{array}\right.
$$

with :

$$
\begin{aligned}
\mathbf{H} & :=\left\{\mathbf{F} \in \mathbf{L}^{2}(\Omega) \mid \nabla \cdot(\mu \mathbf{F})=0\right\} \\
\mathbf{H}_{0, \operatorname{cur}}(\Omega) & :=\left\{\mathbf{F} \in \mathbf{L}^{2}(\Omega) \mid \nabla \times \mathbf{F} \in \mathbf{L}^{2}(\Omega) \text { and } \mathbf{F} \times \mathbf{n}_{\mid \partial \Omega}=0\right\} \\
\mathbf{X} & :=\mathbf{H}_{0, \operatorname{curr}}(\Omega) \cap \mathbf{H}
\end{aligned}
$$

Variational problem

Problem

$$
\left\{\begin{array}{l}
\text { find } \mathbf{F} \in \mathbf{X} \text { such that } \forall \mathbf{B} \in \mathbf{X} \\
(\nabla \times \mathbf{F}, \nabla \times \mathbf{B})=(\mu \mathbf{E}, \mathbf{B})
\end{array}\right.
$$

We will write $F=A E$.

Variational problem

Problem

$$
\left\{\begin{array}{l}
\text { find } \mathbf{F} \in \mathbf{X} \text { such that } \forall \mathbf{B} \in \mathbf{X} \\
(\nabla \times \mathbf{F}, \nabla \times \mathbf{B})=(\mu \mathbf{E}, \mathbf{B})
\end{array}\right.
$$

We will write $\mathrm{F}=\boldsymbol{A E}$.

- the bilinear form is coercive on $\mathbf{X} \rightsquigarrow A$ is well-defined.
- we have an eigenvalue problem for A.
- A can be defined on $L^{2}(\Omega)$.
- we have to deal with the divergence-free constraint.

Requirements on the numerical scheme

Spectral Convergence Result (Osborn 1975)
Assume

- (Pointwise Convergence) For all $\mathbf{E} \in \mathbf{L}^{2}$, $\lim _{h \rightarrow 0}\left\|\left(A_{h}-A\right) \mathbf{E}\right\|_{L^{2}}=0$;
- (Collective Compactness) For all U bounded set of L^{2}, $\left\{A_{h} \mathbf{E} ; \mathbf{E} \in U, 0<h<1\right\}$ is relatively compact in \mathbf{L}^{2}.
Then A_{h} is spectrally convergent to A.

Requirements on the numerical scheme

Spectral Convergence Result (Osborn 1975)
Assume

- (Pointwise Convergence) For all $\mathbf{E} \in \mathbf{L}^{2}$, $\lim _{h \rightarrow 0}\left\|\left(A_{h}-A\right) E\right\|_{L^{2}}=0$;
- (Collective Compactness) For all U bounded set of L^{2}, $\left\{\boldsymbol{A}_{h} \mathbf{E} ; \mathbf{E} \in U, 0<h<1\right\}$ is relatively compact in \mathbf{L}^{2}.
Then A_{h} is spectrally convergent to A.
- A is compact (Bonito and Guermond '10, Bonito, Guermond and L. '10)

Requirements on the numerical scheme

Spectral Convergence Result (Osborn 1975)
Assume

- (Pointwise Convergence) For all $\mathbf{E} \in \mathbf{L}^{2}$, $\lim _{h \rightarrow 0}\left\|\left(A_{h}-A\right) E\right\|_{L^{2}}=0$;
- (Collective Compactness) For all U bounded set of L^{2}, $\left\{A_{h} \mathbf{E} ; \mathbf{E} \in U, 0<h<1\right\}$ is relatively compact in \mathbf{L}^{2}.
Then A_{h} is spectrally convergent to A.
- A is compact (Bonito and Guermond '10, Bonito, Guermond and L. '10)
- For $\mu=1$ and $\mathbf{E} \in \mathbf{H}(\operatorname{div}=0)$, we have $A E \in \mathbf{H}^{1 / 2}$ and $\nabla \times \mathbf{A E} \in \mathbf{H}^{1 / 2}$.

Lagrange FE schemes for constant μ

Non-smooth domains (Costabel et al., '91)
If Ω is non-smooth and non-convex, the space $\mathbf{H}_{0, \text { curl }}(\Omega) \cap \mathbf{H}^{1}$ is a closed proper subset of $\mathbf{H}_{0, \text { curl }}(\Omega) \cap \mathbf{H}_{\text {div }}(\Omega)$.

Lagrange FE schemes for constant μ

Non-smooth domains (Costabel et al., '91)
If Ω is non-smooth and non-convex, the space $\mathbf{H}_{0, \text { curl }}(\Omega) \cap \mathbf{H}^{1}$ is a closed proper subset of $\mathbf{H}_{0, \text { curl }}(\Omega) \cap \mathbf{H}_{\text {div }}(\Omega)$.

Rehabilitation of Continuous Nodal Elements

- Dauge and Costabel ('02) , Bramble, Kolev and Pasciak ('05): control of the divergence in an intermediate space between L^{2} and H^{-1}
- add $\left(w_{\gamma} \nabla \cdot A E, w_{\gamma} \nabla \cdot \mathbf{B}\right)$ to the bilinear form (Buffa, Ciarlet and Jamelot, '10).
- $w_{\gamma} \sim d^{\gamma}$, with $d=$ distance to the singular edges/vertices.
- γ depends on the regularity of the domain.

Numerical scheme (I)

$$
\left\{\begin{array}{l}
\text { Let } 1 / 2<\alpha<1 \text { and find } A_{h} \mathbf{E} \in \mathbf{X}_{h} \text { such that } \forall \mathbf{B}_{h} \in \mathbf{X}_{h} \\
\left(\nabla \times \mathbf{A}_{h} \mathbf{E}, \nabla \times \mathbf{B}_{h}\right)+\left\langle\nabla \cdot\left(\mu A_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\rangle_{-\alpha}=(\mu \mathbf{E}, \mathbf{B})
\end{array}\right.
$$

Numerical scheme (I)

$\left\{\begin{array}{c}\text { Let } 1 / 2<\alpha<1 \text { and find } \boldsymbol{A}_{h} \mathbf{E} \in \mathbf{X}_{h} \text { such that } \forall \mathbf{B}_{h} \in \mathbf{X}_{h} \\ \left(\nabla \times \boldsymbol{A}_{h} \mathbf{E}, \nabla \times \mathbf{B}_{h}\right)+\left\langle\nabla \cdot\left(\mu \boldsymbol{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\rangle_{-\alpha}=(\mu \mathbf{E}, \mathbf{B})\end{array}\right.$

Case $\mu=1$ (Bonito and Guermond, '09)

- Pointwise convergence for $\mathbf{E} \in \mathbf{L}^{2}$ and $\alpha \in(1 / 2,1]$.
- Collective compactness for $\alpha<1$.
- \rightsquigarrow spectrally correct approximation for $1 / 2<\alpha<1$.

But $\langle\cdot, \cdot\rangle_{-\alpha}$ is not implementable.

Numerical scheme (II)

New scheme: Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}$,

$$
\left(\nabla \times \boldsymbol{A}_{h} \mathbf{E}, \nabla \times \mathbf{B}_{h}\right)+\left\langle\nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\rangle_{-\alpha}=\left(\mu \mathbf{E}, \mathbf{B}_{h}\right), \quad \forall \mathbf{B}_{h} \in \mathbf{X}_{h}
$$

Numerical scheme (II)

New scheme: Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}$,
$\left(\nabla \times \mathbf{A}_{h} \mathbf{E}, \nabla \times \mathbf{B}_{h}\right)+h^{2(\alpha-1)}\left\langle\nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\rangle_{-1}=\left(\mu \mathbf{E}, \mathbf{B}_{h}\right), \quad \forall \mathbf{B}_{h} \in \mathbf{X}_{h}$

From $\mathrm{H}^{-\alpha}$ to H^{-1}, inverse estimate

$$
\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{\mathbf{H}^{-\alpha}}^{2} \lesssim h^{2(\alpha-1)}\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{\mathbf{H}^{-1}}^{2} .
$$

Numerical scheme (II)

New scheme: Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}, p_{h}$,

$$
\begin{aligned}
\left(\nabla \times \boldsymbol{A}_{h} \mathbf{E}, \nabla \times \mathbf{B}_{h}\right)+\left(\nabla p_{h}, \mu \mathbf{B}_{h}\right) & =\left(\mu \mathbf{E}, \mathbf{B}_{h}\right), \quad \forall \mathbf{B}_{h} \in \mathbf{X}_{h} \\
\left(\mu \mathbf{A}_{h} \mathbf{E}, \nabla q_{h}\right)-h^{2(\alpha-1)}\left(\nabla p_{h}, \nabla q_{h}\right) & =0, \quad \forall q_{h}
\end{aligned}
$$

From $\mathbf{H}^{-\alpha}$ to \mathbf{H}^{-1}, inverse estimate

$$
\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{H^{-\alpha}}^{2} \lesssim h^{2(\alpha-1)}\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{H^{-1}}^{2} .
$$

From H^{-1} to a mixed formulation

$$
h^{2(\alpha-1)}\left\langle\nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\rangle_{\mathbf{H}-1}=-(\nabla \cdot\left(\mu \mathbf{B}_{h}\right), \underbrace{h^{2(\alpha-1)}(-\Delta)^{-1} \nabla \cdot\left(\mu A_{h} \mathbf{E}\right)}_{:=p_{h}})
$$

Numerical scheme (II)

New scheme: Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}, p_{h}$,

$$
\begin{aligned}
\left(\nabla \times \mathbf{A}_{h} \mathbf{E}, \nabla \times \mathbf{B}_{h}\right)+\left(\nabla p_{h}, \mu \mathbf{B}_{h}\right)+h^{2 \alpha}\left(\nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right) & =\left(\mu \mathbf{E}, \mathbf{B}_{h}\right), \quad \forall \mathbf{B}_{h} \in \mathbf{X}_{h} \\
\left(\mu \mathbf{A}_{h} \mathbf{E}, \nabla q_{h}\right)-h^{2(\alpha-1)}\left(\nabla p_{h}, \nabla q_{h}\right) & =0, \quad \forall q_{h}
\end{aligned}
$$

From $\mathbf{H}^{-\alpha}$ to \mathbf{H}^{-1}, inverse estimate

$$
\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{H^{-\alpha}}^{2} \lesssim h^{2(\alpha-1)}\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{\mathbf{H}^{-1}}^{2} .
$$

From H^{-1} to a mixed formulation

$$
h^{2(\alpha-1)}\left\langle\nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\rangle_{\mathbf{H}^{-1}}=-(\nabla \cdot\left(\mu \mathbf{B}_{h}\right), \underbrace{h^{2(\alpha-1)}(-\Delta)^{-1} \nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right)}_{:=p_{h}})
$$

Inf-Sup stable scheme: $h^{2 \alpha}\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{L^{2}}^{2}$.

Numerical scheme (II)

New scheme: Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}, p_{h}$,

$$
\begin{aligned}
\left(\nabla \times \mathbf{A}_{h} \mathbf{E}, \nabla \times \mathbf{B}_{h}\right)+\left(\nabla p_{h}, \mu \mathbf{B}_{h}\right)+h^{2 \alpha}\left(\nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right) & =\left(\mu \mathbf{E}, \mathbf{B}_{h}\right), \quad \forall \mathbf{B}_{h} \in \mathbf{X}_{h} \\
\left(\mu \mathbf{A}_{h} \mathbf{E}, \nabla q_{h}\right)-h^{2(\alpha-1)}\left(\nabla p_{h}, \nabla q_{h}\right) & =0, \quad \forall q_{h}
\end{aligned}
$$

From $\mathbf{H}^{-\alpha}$ to \mathbf{H}^{-1}, inverse estimate

$$
\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{H^{-\alpha}}^{2} \lesssim h^{2(\alpha-1)}\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{\mathbf{H}^{-1}}^{2} .
$$

From H^{-1} to a mixed formulation

$$
h^{2(\alpha-1)}\left\langle\nabla \cdot\left(\mu \mathbf{A}_{h} \mathbf{E}\right), \nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\rangle_{\mathbf{H}^{-1}}=-(\nabla \cdot\left(\mu \mathbf{B}_{h}\right), \underbrace{h^{2(\alpha-1)}(-\Delta)^{-1} \nabla \cdot\left(\mu A_{h} \mathbf{E}\right)}_{:=p_{h}})
$$

Inf-Sup stable scheme: $h^{2 \alpha}\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{L^{2}}^{2}$.
Lemma: Discrete Control of $\nabla \cdot\left(\mu \mathbf{B}_{h}\right)$ in $H^{-\alpha}$ (Bonito and Guermond, '09)

$$
\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{H^{-\alpha}} \leq \sup _{q_{h} \in \mathbb{Q}_{h}} \frac{\left(\nabla \cdot\left(\mu \mathbf{B}_{h}\right), q_{h}\right)}{h^{1-\alpha}\left\|\nabla q_{h}\right\|_{\mathbf{L}^{2}}}+h^{\alpha}\left\|\nabla \cdot\left(\mu \mathbf{B}_{h}\right)\right\|_{\mathbf{L}^{2}} .
$$

- Bonito and Guermond ('09): if $\mu=1$, we have a spectrally correct approximation, provided $\frac{k}{2 k-1}<\alpha<1$.
- The only requirement on \mathbb{Q}_{n} is that it is a subspace of H_{0}^{1}.
- Bonito, Guermond and L. ('10?): if α is sufficiently close to 1 , we have a spectrally correct approximation.
- If $\nabla \cdot(\mu \mathrm{E}) \neq 0$, the order of convergence decreases when α increases.

OUTLINE

2) Heterogeneous and/or singular domains

3 Numerical simulations

4. Back to MHD

Boundary value problem, $\alpha=0.75$

$$
\begin{aligned}
& \mathbf{E}=\nabla \varphi \\
& \varphi=r^{2 / 3} \sin \left(\frac{2}{3} \theta\right)
\end{aligned}
$$

\mathbb{P}_{1}		
$1 / \mathrm{h}$	rel.err	coc
10	2.39010^{-1}	N/A
20	1.84310^{-1}	0.38
40	1.40510^{-1}	0.39
80	1.03110^{-1}	0.45
160	7.54410^{-2}	0.45
\mathbb{P}_{2}		
\mathbb{P}_{2}		
$1 / \mathrm{h}$	rel. err.	coc
10	1.29010^{-1}	$\mathrm{~N} / \mathrm{A}$
20	8.17810^{-2}	0.66
40	5.97810^{-2}	0.45
80	3.75910^{-2}	0.67
160	2.23210^{-2}	0.75

Numerical Analysis Seminar

Eigenvalue Problem, $\alpha=0.7$

	$\lambda_{1} \simeq 1.476$			$\lambda_{2} \simeq 3.534$		
$1 / \mathrm{h}$	val.	rel. err.	COC	val.	rel. err.	cOC
10	1.707	1.45210^{-1}	N/A	3.537	8.26610^{-4}	$\mathrm{~N} / \mathrm{A}$
20	1.623	9.52210^{-2}	0.61	3.535	2.38010^{-4}	1.8
40	1.586	7.24010^{-2}	0.4	3.534	6.64010^{-5}	1.8
80	1.545	4.61410^{-2}	0.65	3.534	1.72610^{-5}	1.9
$\lambda_{3}=\pi^{2} \simeq 9.870$			$\lambda_{5} \simeq 11.389$			
$1 / \mathrm{h}$	val.	rel. err.	coc	val.	rel. err.	COC
10	7.828	2.30710^{-1}	N/A	7.903	3.61410^{-1}	$\mathrm{~N} / \mathrm{A}$
20	9.870	3.79910^{-7}	19.21	11.39	2.37410^{-5}	13.89
40	9.870	3.85610^{-8}	3.3	11.39	7.78610^{-6}	1.61
80	9.870	3.44410^{-8}	0.16	11.39	2.16810^{-6}	1.85

Benchmark Problem

Eigenvalue Problem (II), $\alpha=0.95$

	$\lambda_{1} \simeq 4.534$			$\lambda_{2} \simeq 6.250$							
$1 / \mathrm{h}$	val.	rel. err.	cOC	val.	rel. err.	cOC					
5	4.538	8.35810^{-4}	$\mathrm{~N} / \mathrm{A}$	7.047	1.27410^{-1}	$\mathrm{~N} / \mathrm{A}$					
10	4.534	9.59210^{-5}	3.12	7.038	1.26110^{-1}	0.01					
20	4.534	3.99210^{-5}	1.26	6.764	8.21810^{-2}	0.62					
40	4.534	1.60610^{-5}	1.31	6.506	4.09610^{-2}	1.00					
$\lambda_{3} \simeq 7.037$									$\lambda_{4} \simeq 22.342$		
$1 / \mathrm{h}$	val.	rel. err.	coc	val.	rel. err.	coc					
5	9.076	2.89710^{-1}	$\mathrm{~N} / \mathrm{A}$	22.51	7.48910^{-3}	$\mathrm{~N} / \mathrm{A}$					
10	7.404	5.22010^{-2}	2.47	22.36	9.48710^{-4}	3.05					
20	7.037	2.27410^{-5}	11.1	22.34	9.93510^{-5}	3.26					
40	7.037	2.59710^{-6}	3.13	22.34	9.71810^{-6}	3.35					

Conclusions and Open Problems

- \mathbf{H}^{1} conforming elements produce a convergent spectral approximation of the Maxwell system provided that the divergence of the electric field is controlled in $\mathbf{H}^{-\alpha}$, $1 / 2<\alpha<1$.
- α close to 1 is required;
- small α are better for the compactness (spurious eigenvalues);
- The finite element solver needs improvement.

OUTLINE

1. MHD problem

2) Heterogeneous and/or singular domains

3 Numerical simulations

Durand spheres

god 1 H1

Numerical Analysis Seminar

VKS setting

- copper envelope,
- $R_{m} \leqslant 50$ for the real experiment,
- impellers made of stainless steel \rightsquigarrow no dynamo,
- impellers made of soft iron \rightsquigarrow dynamo.

Stainless steel impellers

Stainless steel impellers

- Critical Reynolds number : $R_{m c}>70$,

Stainless steel impellers

- Critical Reynolds number : $R_{m c}>70$,
- Effect of the "lid-flow".

Soft iron impellers

Soft iron impellers

- Critical Reynolds number : $R_{m c} \sim 60$ close to the real setting,

Soft iron impellers

- Critical Reynolds number : $R_{m c} \sim 60$ close to the real setting,
- (almost) no effect of the "lid-flow".

Numerical Analysis Seminar

THANK YOU

