Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Approximation of the MHD equations in heterogeneous domains using Lagrange finite elements.

A. Bonito, J.-L. Guermond, R. Laguerre, J. Léorat, <u>F. Luddens</u>, C. Nore, A. Ribeiro

Dec. 8, 2010

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

OUTLINE

- 2 Heterogeneous and/or singular domains
- 3 Numerical simulations

4 Back to MHD

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

OUTLINE

2 Heterogeneous and/or singular domains

- 3 Numerical simulations
- 4 Back to MHD

Numerical Analysis Seminar

Dynamo effect

Dynamo effect: "generation of a non vanishing magnetic field by a moving ferromagnetic fluid".

Moving incompressible fluid ~> Navier-Stokes equations:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \, \mathbf{u} - R_e^{-1} \Delta \mathbf{u} + \nabla \boldsymbol{\rho} = (\nabla \times \mathbf{H}) \times \mu \mathbf{H}$$

Ferromagnetic fluid ~> Maxwell equations:

 $\mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}$ $\nabla \times \mathbf{H} = \mathbf{R}_m \sigma \left(\mathbf{E} + \mathbf{u} \times \mu \mathbf{H} \right) + \mathbf{j}^s$

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Van Kármán Sodium Experiment

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Generic axisymmetric domain

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

$\mu \partial_t \mathbf{H}$	=	$- abla imes {\sf E}$	in Ω
$ abla imes \mathbf{H}$	=	$R_m \sigma \left(\mathbf{E} + \mathbf{u} \times \mu \mathbf{H} \right) + \mathbf{j}^s$	in Ω_c
$ abla imes \mathbf{H}$	=	0	in Ω_v
∇·E	=	0	in Ω_v
$\mathbf{H}^{c} \times \mathbf{n}^{c} + \mathbf{H}^{v} \times \mathbf{n}^{v}$	=	0	on Σ
$\mathbf{E}^{c} \times \mathbf{n}^{c} + \mathbf{E}^{v} \times \mathbf{n}^{v}$	=	0	on Σ
[[H]] ×n	=	0	on Σ_{μ}
[[E]] ×n	=	0	on Σ_{μ}
(E×n	=	a	on Г

Numerical Analysis Seminar

MHD	problem
000	0000

Numerical simulations

Back to MHD

$\mu \partial_t \mathbf{H}$	=	$- abla imes \mathbf{E}$	in Ω
$ abla imes \mathbf{H}$	=	$R_m \sigma \left(\mathbf{E} + \mathbf{u} \times \mu \mathbf{H} \right) + \mathbf{j}^s$	in Ω_c
$ abla imes \mathbf{H}$	=	0	in Ω_v
∇·E	=	0	in Ω_v
$\mathbf{H}^{c} \times \mathbf{n}^{c} + \mathbf{H}^{v} \times \mathbf{n}^{v}$	=	0	on Σ
$\mathbf{E}^{c} \times \mathbf{n}^{c} + \mathbf{E}^{v} \times \mathbf{n}^{v}$	=	0	on Σ
[[H]] ×n	=	0	on Σ_{μ}
[[E]] ×n	=	0	on Σ_{μ}
E×n	=	а	on Г

H : magnetic field E : electric field j^s : current u : velocity + boundary conditions + initial data R_m : magnetic Reynolds number σ : Conductivity μ : Permeability

Back to MHD

Reducing the number of unknowns

• Eliminate **E**^c using Ampère's equation.

Numerical Analysis Seminar

Back to MHD

Reducing the number of unknowns

- Eliminate **E**^c using Ampère's equation.
- Assuming Ω_{ν} is simply-connected, replace \mathbf{H}^{ν} by $\nabla \phi$.

Back to MHD

Reducing the number of unknowns

- Eliminate **E**^c using Ampère's equation.
- Assuming Ω_{ν} is simply-connected, replace \mathbf{H}^{ν} by $\nabla \phi$.
- Eliminate \mathbf{E}^{ν} using the continuity equations.

Back to MHD

Reducing the number of unknowns

- Eliminate **E**^c using Ampère's equation.
- Assuming Ω_{ν} is simply-connected, replace \mathbf{H}^{ν} by $\nabla \phi$.
- Eliminate \mathbf{E}^{ν} using the continuity equations.

Functional framework

$$\begin{split} \mathbf{L} &= & \left\{ (\mathbf{b}, \psi) \in \mathbf{L}^2(\Omega_c) \times \mathcal{H}^1_{\int=0}(\Omega_\nu) \right\} \\ \mathbf{X} &= & \left\{ (\mathbf{b}, \psi) \in \mathbf{H}_{\mathrm{curl}}(\Omega_c) \times \mathcal{H}^1_{\int=0}; (\mathbf{b} \times \mathbf{n}^c + \nabla \psi \times \mathbf{n}^\nu)_{|\Sigma} = \mathbf{0} \right\} \end{split}$$

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

$(\mu^{\mathbf{v}}\partial_t\nabla\phi,\nabla\psi)_{\mathbf{\Omega}_{\mathbf{v}}} = -(\nabla\times\mathbf{E}^{\mathbf{v}},\nabla\psi)_{\mathbf{\Omega}_{\mathbf{v}}}$

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

$\begin{aligned} (\mu^{\nu}\partial_{t}\nabla\phi,\nabla\psi)_{\Omega_{\nu}} &= -(\nabla\times\mathbf{E}^{\nu},\nabla\psi)_{\Omega_{\nu}} \\ &= (\mathbf{E}^{\nu}\times\mathbf{n}^{\nu},\nabla\psi)_{\Sigma} + (\mathbf{E}^{\nu}\times\mathbf{n}^{\nu},\nabla\psi)_{\Gamma_{\nu}} \end{aligned}$

Numerical Analysis Seminar

MHD with Lagrange FE

Numerical Analysis Seminar

 $\begin{aligned} (\mu^{\nu}\partial_{t}\nabla\phi,\nabla\psi)_{\Omega_{\nu}} &= -(\nabla\times\mathbf{E}^{\nu},\nabla\psi)_{\Omega_{\nu}} \\ &= (\mathbf{E}^{\nu}\times\mathbf{n}^{\nu},\nabla\psi)_{\Sigma} + (\mathbf{E}^{\nu}\times\mathbf{n}^{\nu},\nabla\psi)_{\Gamma_{\nu}} \\ &= -(\mathbf{E}^{c},\nabla\psi\times\mathbf{n}^{\nu})_{\Sigma} + (\mathbf{a},\nabla\psi)_{\Gamma_{\nu}} \end{aligned}$

MHD problem

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

and then get rid of \mathbf{E}^c

$$\begin{split} {}^{\iota^{\nu}}\partial_{t}\nabla\phi,\nabla\psi)_{\Omega_{\nu}} &= -(\nabla\times\mathbf{E}^{\nu},\nabla\psi)_{\Omega_{\nu}} \\ &= (\mathbf{E}^{\nu}\times\mathbf{n}^{\nu},\nabla\psi)_{\Sigma} + (\mathbf{E}^{\nu}\times\mathbf{n}^{\nu},\nabla\psi)_{\Gamma_{\nu}} \\ &= -(\mathbf{E}^{c},\nabla\psi\times\mathbf{n}^{\nu})_{\Sigma} + (\mathbf{a},\nabla\psi)_{\Gamma_{\nu}} \\ (\mu^{c}\partial_{t}\mathbf{H}^{c},\mathbf{b})_{\Omega_{\nu}} &= -(\mathbf{E}^{c},\mathbf{b})_{\Omega_{c}} + (\mathbf{E}^{c}\times\mathbf{n}^{c},\mathbf{b})_{\Gamma_{c}} \\ &- (\{\mathbf{E}^{c}\},[\![\mathbf{b}]\!]\times\mathbf{n})_{\Sigma_{\mu}} - (\mathbf{E}^{c},\mathbf{b}\times\mathbf{n}^{c})_{\Gamma_{c}} \end{split}$$

V

Μ

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Numerical Analysis Seminar

 $= \ell(\mathbf{b}, \psi)$

 $(\mu^{c}\partial_{t}\mathsf{H}^{c},\mathsf{b})_{\Omega_{c}}+(\mu^{v}\partial_{t}\nabla\phi,\nabla\psi)_{\Omega_{v}}$ + $\left((R_m \sigma)^{-1} \nabla \times \mathbf{H}^c - \mathbf{u} \times \mu^c \mathbf{H}^c, \nabla \times \mathbf{b} \right)_{\Omega_c}$ + $((R_m\sigma)^{-1}\nabla \times \mathbf{H}^c - \mathbf{u} \times \mu^c \mathbf{H}^c, \mathbf{b} \times \mathbf{n}^c + \nabla \psi \times \mathbf{n}^v)_{\nabla}$ + $\left(\left\{(R_m\sigma)^{-1}\nabla\times\mathbf{H}^c-\mathbf{u}\times\mu^c\mathbf{H}^c\right\}, [\mathbf{b}]\times\mathbf{n}\right)_{\Sigma_m}$

IP method

MHD problem 00000000

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

IP method

$$\begin{aligned} \left(\mu^{c}\partial_{t}\mathbf{H}^{c},\mathbf{b}\right)_{\Omega_{c}}+\left(\mu^{v}\partial_{t}\nabla\phi,\nabla\psi\right)_{\Omega_{v}} \\ + & \left((R_{m}\sigma)^{-1}\nabla\times\mathbf{H}^{c}-\mathbf{u}\times\mu^{c}\mathbf{H}^{c},\nabla\times\mathbf{b}\right)_{\Omega_{c}} \\ + & \left((R_{m}\sigma)^{-1}\nabla\times\mathbf{H}^{c}-\mathbf{u}\times\mu^{c}\mathbf{H}^{c},\mathbf{b}\times\mathbf{n}^{c}+\nabla\psi\times\mathbf{n}^{v}\right)_{\Sigma} \\ + & \left(\left\{(R_{m}\sigma)^{-1}\nabla\times\mathbf{H}^{c}-\mathbf{u}\times\mu^{c}\mathbf{H}^{c}\right\},\left[\!\left[\mathbf{b}\right]\!\right]\times\mathbf{n}\right)_{\Sigma_{\mu}} \\ + & h^{-1}\left(\mathbf{H}^{c}\times\mathbf{n}^{c}+\nabla\phi\times\mathbf{n}^{v},\mathbf{b}\times\mathbf{n}^{c}+\nabla\psi\times\mathbf{n}^{v}\right)_{\Sigma} \\ + & h^{-1}\left(\left[\!\left[\mathbf{H}^{c}\right]\!\right]\times\mathbf{n},\left[\!\left[\mathbf{b}\right]\!\right]\times\mathbf{n}\right)_{\Sigma_{\mu}} \\ = & \ell\left(\mathbf{b},\psi\right) \end{aligned}$$

Back to MHD

SFEMaNS

Spectral/Finite Element for Maxwell and Navier-Stokes equations: F90 code developed since 2002 by J.-L. Guermond, C. Nore, J. Léorat, R. Laguerre, A. Ribeiro and F.L.

- takes advantage of the cylindrical symmetry,
- Fourier decomposition in the azimuthal direction,
- Lagrange Finite Element solver in meridian plane,
- o → smaller systems,
- divergence of μ **H** used to be stabilized in L².

Aim: improve it to correctly solve problems involving eigenvalues, piecewise smooth permeability and/or geometrical singularities.

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

OUTLINE

1 MHD problem

2 Heterogeneous and/or singular domains

3 Numerical simulations

4 Back to MHD

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Eigenvalue problem For non-smooth μ (e.g. piecewise constant), find λ , **E** s.t.

 $\begin{aligned} \nabla \times \nabla \times \mathbf{E} &= \lambda \mu \mathbf{E} & \text{ in } \Omega, \\ \nabla \cdot (\mu \mathbf{E}) &= 0 & \text{ in } \Omega, \\ \mathbf{E} \times \mathbf{n} &= 0 & \text{ on } \partial \Omega \end{aligned}$

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Eigenvalue problem For non-smooth μ (e.g. piecewise constant), find λ , **E** s.t.

$$\begin{split} \nabla \times \nabla \times \mathbf{E} &= \lambda \mu \mathbf{E} & \text{ in } \Omega, \\ \nabla \cdot (\mu \mathbf{E}) &= 0 & \text{ in } \Omega, \\ \mathbf{E} \times \mathbf{n} &= 0 & \text{ on } \partial \Omega \end{split}$$

Requirements

use Lagrange finite element

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Eigenvalue problem For non-smooth μ (e.g. piecewise constant), find λ , **E** s.t.

$$\begin{split} \nabla \times \nabla \times \mathbf{E} &= \lambda \mu \mathbf{E} & \text{ in } \Omega, \\ \nabla \cdot (\mu \mathbf{E}) &= 0 & \text{ in } \Omega, \\ \mathbf{E} \times \mathbf{n} &= 0 & \text{ on } \partial \Omega \end{split}$$

Requirements

- use Lagrange finite element
- use low order polynomials

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Eigenvalue problem For non-smooth μ (e.g. piecewise constant), find λ , **E** s.t.

 $\begin{aligned} \nabla \times \nabla \times \mathbf{E} &= \lambda \mu \mathbf{E} & & \text{in } \Omega, \\ \nabla \cdot (\mu \mathbf{E}) &= 0 & & \text{in } \Omega, \\ \mathbf{E} \times \mathbf{n} &= 0 & & \text{on } \partial \Omega \end{aligned}$

Requirements

- use Lagrange finite element
- use low order polynomials
- use as less as possible information about Ω

Numerical simulations

Back to MHD

Boundary value problem

First consider, for $\textbf{E} \in \textbf{H}$ the following

 $\begin{cases} \text{ find } \mathbf{F} \in \mathbf{X} \text{ such that} \\ \nabla \times \nabla \times \mathbf{F} = \mu \mathbf{E} \end{cases}$

with :

$$\begin{array}{lll} \textbf{H} &:= & \left\{\textbf{F} \in \textbf{L}^2(\Omega) \mid \nabla \cdot (\mu \textbf{F}) = 0\right\} \\ \textbf{H}_{0,\text{curl}}(\Omega) &:= & \left\{\textbf{F} \in \textbf{L}^2(\Omega) \mid \nabla \times \textbf{F} \in \textbf{L}^2(\Omega) \text{ and } \textbf{F} \times \textbf{n}_{\mid \partial \Omega} = 0\right\} \\ \textbf{X} &:= & \textbf{H}_{0,\text{curl}}(\Omega) \cap \textbf{H} \end{array}$$

Numerical Analysis Seminar

Heterogeneous and/or singular domains $_{\rm OOOOOOO}$

Numerical simulations

Back to MHD

Variational problem

Problem

find
$$\mathbf{F} \in \mathbf{X}$$
 such that $\forall \mathbf{B} \in \mathbf{X}$
 $(\nabla \times \mathbf{F}, \nabla \times \mathbf{B}) = (\mu \mathbf{E}, \mathbf{B})$

We will write $\mathbf{F} = A\mathbf{E}$.

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Variational problem

Problem

find
$$\mathbf{F} \in \mathbf{X}$$
 such that $\forall \mathbf{B} \in \mathbf{X}$
 $(\nabla \times \mathbf{F}, \nabla \times \mathbf{B}) = (\mu \mathbf{E}, \mathbf{B})$

We will write $\mathbf{F} = A\mathbf{E}$.

- the bilinear form is coercive on $\mathbf{X} \rightsquigarrow A$ is well-defined.
- we have an eigenvalue problem for A.
- A can be defined on $L^2(\Omega)$.
- we have to deal with the divergence-free constraint.

Back to MHD

Requirements on the numerical scheme

Spectral Convergence Result (Osborn 1975) Assume

- (Pointwise Convergence) For all $\mathbf{E} \in \mathbf{L}^2$, $\lim_{h\to 0} \|(A_h - A)\mathbf{E}\|_{\mathbf{L}^2} = 0$;
- (Collective Compactness) For all *U* bounded set of L², {*A_h*E; E ∈ *U*, 0 < *h* < 1} is relatively compact in L².

Then A_h is spectrally convergent to A.

Back to MHD

Requirements on the numerical scheme

Spectral Convergence Result (Osborn 1975) Assume

- (Pointwise Convergence) For all $\mathbf{E} \in \mathbf{L}^2$, $\lim_{h\to 0} \|(A_h - A)\mathbf{E}\|_{\mathbf{L}^2} = 0$;
- (Collective Compactness) For all *U* bounded set of L^2 , $\{A_h E; E \in U, 0 < h < 1\}$ is relatively compact in L^2 .

Then A_h is spectrally convergent to A.

 A is compact (Bonito and Guermond '10, Bonito, Guermond and L. '10)

Back to MHD

Requirements on the numerical scheme

Spectral Convergence Result (Osborn 1975) Assume

- (Pointwise Convergence) For all $\mathbf{E} \in \mathbf{L}^2$, $\lim_{h\to 0} \|(A_h - A)\mathbf{E}\|_{\mathbf{L}^2} = 0;$
- (Collective Compactness) For all *U* bounded set of L², {*A_h*E; E ∈ *U*, 0 < *h* < 1} is relatively compact in L².

Then A_h is spectrally convergent to A.

- *A* is compact (Bonito and Guermond '10, Bonito, Guermond and L. '10)
- For $\mu = 1$ and $\mathbf{E} \in \mathbf{H}(\text{div} = 0)$, we have $A\mathbf{E} \in \mathbf{H}^{1/2}$ and $\nabla \times A\mathbf{E} \in \mathbf{H}^{1/2}$.

Lagrange FE schemes for constant μ

Non-smooth domains (Costabel et al., '91)

If Ω is non-smooth and non-convex, the space $\mathbf{H}_{0,\mathrm{curl}}(\Omega) \cap \mathbf{H}^1$ is a closed proper subset of $\mathbf{H}_{0,\mathrm{curl}}(\Omega) \cap \mathbf{H}_{\mathrm{div}}(\Omega)$.

Numerical Analysis Seminar

Lagrange FE schemes for constant μ

Non-smooth domains (Costabel et al., '91)

If Ω is non-smooth and non-convex, the space $\mathbf{H}_{0,\mathrm{curl}}(\Omega) \cap \mathbf{H}^1$ is a closed proper subset of $\mathbf{H}_{0,\mathrm{curl}}(\Omega) \cap \mathbf{H}_{\mathrm{div}}(\Omega)$.

Rehabilitation of Continuous Nodal Elements

- Dauge and Costabel ('02) , Bramble, Kolev and Pasciak ('05): control of the divergence in an intermediate space between L^2 and H^{-1}
- add (*w_γ*∇·*A***E**, *w_γ*∇·**B**) to the bilinear form (Buffa, Ciarlet and Jamelot, '10).
- $w_{\gamma} \sim d^{\gamma}$, with d =distance to the singular edges/vertices.
- γ depends on the regularity of the domain.

Numerical simulations

Back to MHD

Numerical scheme (I)

 $\begin{cases} \text{Let } 1/2 < \alpha < 1 \text{ and find } A_h \mathbf{E} \in \mathbf{X}_h \text{ such that } \forall \mathbf{B}_h \in \mathbf{X}_h \\ (\nabla \times A_h \mathbf{E}, \nabla \times \mathbf{B}_h) + \langle \nabla \cdot (\mu A_h \mathbf{E}), \nabla \cdot (\mu \mathbf{B}_h) \rangle_{-\alpha} = (\mu \mathbf{E}, \mathbf{B}) \end{cases}$

Numerical Analysis Seminar

Numerical scheme (I)

 $\left\{ \begin{array}{l} \text{Let } 1/2 < \alpha < 1 \text{ and find } \overline{A_h} \mathbf{E} \in \mathbf{X}_h \text{ such that } \forall \mathbf{B}_h \in \mathbf{X}_h \\ (\nabla \times A_h \mathbf{E}, \nabla \times \mathbf{B}_h) + \langle \nabla \cdot (\mu A_h \mathbf{E}), \nabla \cdot (\mu \mathbf{B}_h) \rangle_{-\alpha} = (\mu \mathbf{E}, \mathbf{B}) \end{array} \right.$

Case $\mu = 1$ (Bonito and Guermond, '09)

- Pointwise convergence for $\mathbf{E} \in \mathbf{L}^2$ and $\alpha \in (1/2, 1]$.
- Collective compactness for $\alpha < 1$.
- \rightsquigarrow spectrally correct approximation for $1/2 < \alpha < 1$.

But $\langle \cdot, \cdot \rangle_{-\alpha}$ is not implementable.

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Numerical scheme (II)

New scheme: Find $A_h \mathbf{E} \in \mathbf{X}_h$,

 $(\nabla \times A_h \mathsf{E}, \nabla \times \mathsf{B}_h) + \langle \nabla \cdot (\mu A_h \mathsf{E}), \nabla \cdot (\mu \mathsf{B}_h) \rangle_{-\alpha} = (\mu \mathsf{E}, \mathsf{B}_h), \quad \forall \mathsf{B}_h \in \mathsf{X}_h$

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Numerical scheme (II)

New scheme: Find $A_h \mathbf{E} \in \mathbf{X}_h$, $(\nabla \times A_h \mathbf{E}, \nabla \times \mathbf{B}_h) + h^{2(\alpha-1)} \langle \nabla \cdot (\mu A_h \mathbf{E}), \nabla \cdot (\mu \mathbf{B}_h) \rangle_{-1} = (\mu \mathbf{E}, \mathbf{B}_h), \quad \forall \mathbf{B}_h \in \mathbf{X}_h$

From $H^{-\alpha}$ to H^{-1} , inverse estimate

 $\|
abla \cdot (\mu \mathbf{B}_h)\|^2_{\mathbf{H}^{-lpha}} \lesssim h^{2(lpha-1)} \|
abla \cdot (\mu \mathbf{B}_h)\|^2_{\mathbf{H}^{-1}}.$

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Numerical scheme (II)

New scheme: Find $A_h \mathbf{E} \in \mathbf{X}_h$, p_h , $(\nabla \times A_h \mathbf{E}, \nabla \times \mathbf{B}_h) + (\nabla p_h, \mu \mathbf{B}_h) = (\mu \mathbf{E}, \mathbf{B}_h), \quad \forall \mathbf{B}_h \in \mathbf{X}_h$ $(\mu A_h \mathbf{E}, \nabla q_h) - h^{2(\alpha-1)} (\nabla p_h, \nabla q_h) = 0, \quad \forall q_h$ From $\mathbf{H}^{-\alpha}$ to \mathbf{H}^{-1} , inverse estimate $\|\nabla \cdot (\mu \mathbf{B}_h)\|_{\mathbf{H}^{-\alpha}}^2 \lesssim h^{2(\alpha-1)} \|\nabla \cdot (\mu \mathbf{B}_h)\|_{\mathbf{H}^{-1}}^2.$ From \mathbf{H}^{-1} to a mixed formulation $h^{2(\alpha-1)} \langle \nabla \cdot (\mu A_h \mathbf{E}), \nabla \cdot (\mu \mathbf{B}_h) \rangle_{\mathbf{H}^{-1}} = -(\nabla \cdot (\mu \mathbf{B}_h), \underbrace{h^{2(\alpha-1)}(-\Delta)^{-1} \nabla \cdot (\mu A_h \mathbf{E})}_{:=p_h})$

Back to MHD

Numerical scheme (II)

New scheme: Find $A_h \mathbf{E} \in \mathbf{X}_h$, p_h ,

$$egin{aligned} & (
abla imes A_h \mathsf{E},
abla imes \mathsf{B}_h) + (
abla p_h, \mu \mathsf{B}_h) + h^{2lpha} \left(
abla \cdot (\mu A_h \mathsf{E}),
abla \cdot (\mu \mathsf{B}_h)
ight) = (\mu \mathsf{E}, \mathsf{B}_h), & \forall \mathsf{B}_h \in \mathsf{X} \ & (\mu A_h \mathsf{E},
abla q_h) - h^{2(lpha - 1)} \left(
abla p_h,
abla q_h
ight) = 0, & \forall q_h \end{aligned}$$

From $\mathbf{H}^{-\alpha}$ to \mathbf{H}^{-1} , inverse estimate

$$\|\nabla (\mu \mathbf{B}_h)\|_{\mathbf{H}^{-\alpha}}^2 \lesssim h^{2(\alpha-1)} \|\nabla (\mu \mathbf{B}_h)\|_{\mathbf{H}^{-1}}^2.$$

From \mathbf{H}^{-1} to a mixed formulation

$$h^{2(\alpha-1)}\langle \nabla \cdot (\mu A_h \mathbf{E}), \nabla \cdot (\mu \mathbf{B}_h) \rangle_{\mathbf{H}^{-1}} = -(\nabla \cdot (\mu \mathbf{B}_h), \underbrace{h^{2(\alpha-1)}(-\Delta)^{-1} \nabla \cdot (\mu A_h \mathbf{E})}_{:=p_h})$$

Inf-Sup stable scheme: $h^{2\alpha} \| \nabla (\mu \mathbf{B}_h) \|_{L^2}^2$.

Back to MHD

Numerical scheme (II)

New scheme: Find $A_h \mathbf{E} \in \mathbf{X}_h$, p_h ,

$$egin{aligned} & (
abla imes A_h \mathsf{E},
abla imes \mathsf{B}_h) + (
abla p_h, \mu \mathsf{B}_h) + h^{2lpha} \left(
abla \cdot (\mu A_h \mathsf{E}),
abla \cdot (\mu \mathsf{B}_h)
ight) = (\mu \mathsf{E}, \mathsf{B}_h), & \forall \mathsf{B}_h \in \mathsf{X} \ & (\mu A_h \mathsf{E},
abla q_h) - h^{2(lpha - 1)} \left(
abla p_h,
abla q_h
ight) = 0, & \forall q_h \end{aligned}$$

From $\mathbf{H}^{-\alpha}$ to \mathbf{H}^{-1} , inverse estimate

$$\|\nabla (\mu \mathbf{B}_h)\|_{\mathbf{H}^{-\alpha}}^2 \lesssim h^{2(\alpha-1)} \|\nabla (\mu \mathbf{B}_h)\|_{\mathbf{H}^{-1}}^2.$$

From \mathbf{H}^{-1} to a mixed formulation

$$h^{2(\alpha-1)}\langle \nabla \cdot (\mu \mathbf{A}_{h} \mathbf{E}), \nabla \cdot (\mu \mathbf{B}_{h}) \rangle_{\mathbf{H}^{-1}} = -(\nabla \cdot (\mu \mathbf{B}_{h}), \underbrace{h^{2(\alpha-1)}(-\Delta)^{-1} \nabla \cdot (\mu \mathbf{A}_{h} \mathbf{E})}_{:=\rho_{h}})$$

Inf-Sup stable scheme: $h^{2\alpha} \| \nabla (\mu \mathbf{B}_h) \|_{\mathbf{L}^2}^2$.

Lemma: Discrete Control of $\nabla (\mu \mathbf{B}_h)$ in $H^{-\alpha}$ (Bonito and Guermond, '09)

$$\|\nabla (\mu \mathbf{B}_h)\|_{H^{-\alpha}} \leq \sup_{q_h \in \mathbb{Q}_h} \frac{(\nabla (\mu \mathbf{B}_h), q_h)}{h^{1-\alpha} \|\nabla q_h\|_{\mathbf{L}^2}} + h^{\alpha} \|\nabla (\mu \mathbf{B}_h)\|_{\mathbf{L}^2}.$$

Numerical Analysis Seminar

- Bonito and Guermond ('09): if $\mu = 1$, we have a spectrally correct approximation, provided $\frac{k}{2k-1} < \alpha < 1$.
- The only requirement on \mathbb{Q}_h is that it is a subspace of H_0^1 .
- Bonito, Guermond and L. ('10?): if α is sufficiently close to 1, we have a spectrally correct approximation.
- If ∇·(μE) ≠ 0, the order of convergence decreases when α increases.

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

OUTLINE

- 2 Heterogeneous and/or singular domains
- 3 Numerical simulations

4 Back to MHD

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Boundary value problem, $\alpha = 0.75$

$$\mathbf{E} = \nabla \varphi$$
$$\varphi = r^{2/3} \sin\left(\frac{2}{3}\theta\right)$$

	\mathbb{P}_1				
1/h	rel.err	COC			
10	2.39010^{-1}	N/A			
20	1.84310^{-1}	0.38			
40	1.40510^{-1}	0.39			
80	1.03110^{-1}	0.45			
160	7.544 10 ⁻²	0.45			
	₽2				
1/h					
1711	rei. err.	COC			
10	rei. err. 1.290 10 ⁻¹	coc N/A			
10 20	rei. err. 1.290 10^{-1} 8.178 10^{-2}	coc N/A 0.66			
10 20 40	rei. err. 1.290 10 ⁻¹ 8.178 10 ⁻² 5.978 10 ⁻²	coc N/A 0.66 0.45			
10 20 40 80	rei. err. 1.290 10 ⁻¹ 8.178 10 ⁻² 5.978 10 ⁻² 3.759 10 ⁻²	coc N/A 0.66 0.45 0.67			

Numerical Analysis Seminar

Numerical simulations

Back to MHD

Eigenvalue Problem, $\alpha = 0.7$

	$\lambda_1 \simeq 1.476$			$\lambda_2 \simeq 3.534$		
1/h	val.	rel. err.	COC	val.	rel. err.	COC
10	1.707	1.452 10 ⁻¹	N/A	3.537	8.266 10 ⁻⁴	N/A
20	1.623	9.522 10 ⁻²	0.61	3.535	2.38010^{-4}	1.8
40	1.586	7.240 10 ⁻²	0.4	3.534	6.640 10 ⁻⁵	1.8
80	1.545	4.614 10 ⁻²	0.65	3.534	1.726 10 ⁻⁵	1.9
	λ	$_3=\pi^2\simeq 9.87$	0	$\lambda_5 \simeq$ 11.389		
1/h	val.	rel. err.	COC	val.	rel. err.	COC
10	7.828	2.30710^{-1}	N/A	7.903	3.614 10 ⁻¹	N/A
20	9.870	3.799 10 ⁻⁷	19.21	11.39	2.374 10 ⁻⁵	13.89
40	9.870	3.856 10 ⁻⁸	3.3	11.39	7.786 10 ⁻⁶	1.61
80	9.870	3.444 10 ⁻⁸	0.16	11.39	2.168 10 ⁻⁶	1.85

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Benchmark Problem

Numerical Analysis Seminar

Numerical simulations

Back to MHD

Eigenvalue Problem (II), $\alpha = 0.95$

	$\lambda_1 \simeq 4.534$		$\lambda_2\simeq 6.250$			
1/h	val.	rel. err.	COC	val.	rel. err.	COC
5	4.538	8.35810^{-4}	N/A	7.047	1.274 10 ⁻¹	N/A
10	4.534	9.592 10 ⁻⁵	3.12	7.038	1.261 10 ⁻¹	0.01
20	4.534	3.992 10 ⁻⁵	1.26	6.764	8.218 10 ⁻²	0.62
40	4.534	1.606 10 ⁻⁵	1.31	6.506	4.096 10 ⁻²	1.00
	$\lambda_3 \simeq 7.037$		$\lambda_4 \simeq$ 22.342			
1/h	val.	rel. err.	COC	val.	rel. err.	COC
5	9.076	2.897 10 ⁻¹	N/A	22.51	7.48910^{-3}	N/A
10	7.404	5.220 10 ⁻²	2.47	22.36	9.48710^{-4}	3.05
20	7.037	2.274 10 ⁻⁵	11.1	22.34	9.935 10 ⁻⁵	3.26
40	7.037	2.597 10 ⁻⁶	3.13	22.34	9.71810 ⁻⁶	3.35

Numerical Analysis Seminar

Numerical simulations

Back to MHD

Conclusions and Open Problems

- H¹ conforming elements produce a convergent spectral approximation of the Maxwell system provided that the divergence of the electric field is controlled in H^{-α}, 1/2 < α < 1.
- α close to 1 is required;
- small α are better for the compactness (spurious eigenvalues);
- The finite element solver needs improvement.

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

OUTLINE

1 MHD problem

- 2 Heterogeneous and/or singular domains
- 3 Numerical simulations

4 Back to MHD

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD •00000

Durand spheres

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

VKS setting

- copper envelope,
- $R_m \leq 50$ for the real experiment,
- impellers made of stainless steel → no dynamo,
- impellers made of soft iron
 → dynamo.

Numerical simulations

Back to MHD

Stainless steel impellers

Numerical Analysis Seminar

Numerical simulations

Back to MHD

Stainless steel impellers

• Critical Reynolds number : $R_{mc} > 70$,

Numerical Analysis Seminar

Numerical simulations

Back to MHD

Stainless steel impellers

- Critical Reynolds number : $R_{mc} > 70$,
- Effect of the "lid-flow".

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD 0000●0

Soft iron impellers

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Soft iron impellers

• Critical Reynolds number : $R_{mc} \sim 60$ close to the real setting,

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Soft iron impellers

- Critical Reynolds number : $R_{mc} \sim 60$ close to the real setting,
- (almost) no effect of the "lid-flow".

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

Numerical Analysis Seminar

Heterogeneous and/or singular domains

Numerical simulations

Back to MHD

THANK YOU

Numerical Analysis Seminar