A sharp cartesian method for the simulation of air-water interface

Lisl Weynans, Michel Bergmann, Francky Luddens

Institut de Mathématiques de Bordeaux & INRIA Bordeaux-Sud Ouest

Numerical Analysis Seminar Texas A&M University Sept. 11th, 2014

ション ふゆ く は く は く む く む く し く

Motivation: sharp simulation of air-water interface

- Starting point:
 - NaSCar: a 3D parallel incompressible code with fluid-solid interaction
 - a second order cartesian method to solve elliptic problems with discontinuities across interfaces

 \Rightarrow adaptation of this method to solve accurately the pressure at the interface between fluids with strong density ratios

- Our aim: simulation of solids interacting with fluids with strong density ratios (air-water interface)
 - wave breaking
 - marine engineering
 - wave energy converters

Bibliography

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Only few sharp methods on cartesian grids in this context:

- Kang, Fedkiw and Liu 2000: application of the famous "Ghost Fluid Method", pioneering work, but non-physical effects due to poor momentum preservation for each fluid
- Raessi and Pitsch 2012: "cut-cell"-like method
- Zhou et al 2012: only for fixed interface

Figure: Left: non physical behavior for dam-break problem (Kang et. al.), right: "cut-cell" interface reconstruction (Raessi and Pitsch)

Notations

うっつ 川 (山) (山) (山) (山) (山) (山)

Fluid model

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Incompressible Navier-Stokes equations in Ω_1 and Ω_2 :

$$\rho(\boldsymbol{u}_t + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u}) = -\nabla p + (\nabla \cdot \tau)^T + \rho \boldsymbol{g},$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$

• Continuity of velocity and velocity divergence:

$$[u] = [v] = 0,$$

 $[(u_n, v_n) \cdot n] = 0.$

• Jump conditions on Γ :

$$[\mu(u_n, v_n) \cdot \boldsymbol{\eta} + \mu(u_\eta, v_\eta) \cdot \boldsymbol{n}] = 0,$$

$$[p] = \sigma \kappa + 2[\mu](u_n, v_n) \cdot \boldsymbol{n}.$$

• Material derivative of the velocity continuity

$$\left[\frac{\nabla p}{\rho}\right] = \left[\frac{(\nabla \cdot \tau)^T}{\rho}\right].$$

Discretization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

- In the fluid, all variables on the same grid points
- Possible corrective term to avoid parasitic modes of the pressure

Numerical scheme in the fluid

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Predictor-corrector scheme:

• Prediction (we take p = 0)

$$\frac{\boldsymbol{u}^* - \boldsymbol{u}^n}{\Delta t} = -[(\boldsymbol{u} \cdot \nabla)\boldsymbol{u}]^{n+\frac{1}{2}} + \frac{(\nabla \cdot \tau^n)^T}{\rho} - \boldsymbol{g}$$

• Resolution of elliptic equation

$$\nabla \cdot (\frac{1}{\rho} \nabla p) = \frac{\nabla \cdot \boldsymbol{u}^*}{\Delta t}$$

• Correction

$$oldsymbol{u}^{n+1} = oldsymbol{u}^* - rac{\Delta t}{
ho}
abla p$$

Why do we take p = 0 in prediction step?

$$[p] = \sigma \kappa + 2[\mu](u_n, v_n).\boldsymbol{n}.$$

 $\Rightarrow p$ possibly discontinuous if the interface crosses a grid point during Δt

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Numerical scheme in the fluid

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

うして ふゆう ふほう ふほう ふしつ

• Elliptic equation:

$$\nabla \cdot (\frac{1}{\rho} \nabla p) = \frac{\nabla \cdot \boldsymbol{u}^*}{\Delta t}$$

Discontinuity of ρ , jump conditions \Rightarrow lack of consistency

• <u>Correction</u> :

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^* - \frac{\Delta t}{
ho}
abla p$$

Discontinuity of ρ and ψ \Rightarrow lack of consistency

ション ふゆ く は く は く む く む く し く

Our solution:

- Creation of additional unknowns for u^* and p on the interface, used for a sharp resolution of the pressure
- Regularization of μ and ρ only to account for viscous terms

 → no discontinuity any more in viscous terms

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Elliptic problem
 - \bullet In the fluid:

$$\nabla \cdot (\frac{1}{\rho} \nabla p) = \frac{\nabla \cdot \boldsymbol{u}^*}{\Delta t}$$

(extrapolation of grid values for u^*)

• On the interface:

$$[p] = \sigma \kappa,$$
$$[\frac{\nabla p}{\rho}] = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Interlude: elliptic problems with immersed interfaces

$$\begin{aligned} \nabla.(k\nabla u) &= f \text{ on } \Omega = \Omega_1 \cup \Omega_2 \\ \llbracket u \rrbracket &= \alpha \text{ on } \Sigma \\ \llbracket k \frac{\partial u}{\partial n} \rrbracket &= \beta \text{ on } \Sigma \\ u &= g \text{ on } \delta \Omega \end{aligned}$$

Discretization strategy

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Creation of additional unknowns on the interface:

- used to discretize the elliptic operator on each side of the interface
- obtained by a discretization of jump conditions across the interface

Which accuracy is needed near the interface?

To obtain a second order convergence (in max norm), we need:

- a first-order truncation error for the elliptic operator near the interface \Rightarrow avoid linear extrapolations (for instance: ghost-cell like)
- a second-order truncation error of the fluxes discretization
 ⇒ use of an expanded stencil

Figure: Examples of stencils for the discretization of elliptic operator and fluxes on each side of the interface.

ション ふゆ く は く は く む く む く し く

Rising of a small air bubble in water

 $\begin{array}{l} \text{Water: } \rho = 1000 \ \text{kg}/m^3, \ \mu = 1,137.10^{-3} \ \text{kg/ms}, \\ \text{Air: } \rho = 1 \text{kg}/m^3, \ \mu = 1,78.10^{-5} \ \text{kg/ms}, \\ \sigma = 0.0728 \ \text{kg}/s^2, \ \text{bubble radius } 1/300 \ \text{m}, \ Tf = 0.05s. \end{array}$

Rising of a large air bubble in water

Water: $\rho = 1000 \text{ kg/m}^3$, $\mu = 1,137.10^{-3} \text{ kg/ms}$, Air: $\rho = 1 \text{kg/m}^3$, $\mu = 1,78.10^{-5} \text{ kg/ms}$, $\sigma = 0.0728 \text{ kg/s}^2$, bubble radius 1/3 m, Tf = 0.5s.

Dam break problem

$$\begin{array}{l} \mbox{Water:} \ \rho = 1000 \ \mbox{kg}/m^3, \ \mu = 1,137.10^{-3} \ \mbox{kg/ms}, \\ \mbox{Air:} \ \rho = 1,226 \mbox{kg}/m^3, \ \mu = 1,78.10^{-5} \ \mbox{kg/ms}, \\ \sigma = 0.0728 \ \mbox{kg}/s^2, \ \mbox{height of water column} \ h = 5.715 \ \mbox{cm, domain } 40 \times 10 \ \mbox{cm} \end{array}$$

Sharp capture of the interface: level-set approach

- Γ captured as $\{\phi = 0\}$ with ϕ defined over Ω ,
- easily handle complex geometries,
- straightforward computation of geometric properties:

$$\boldsymbol{n} = \nabla \phi, \qquad \kappa = \nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right),$$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

- transport of Γ with the flow \boldsymbol{u} ,
- in practice, ϕ is the signed distance to $\Gamma \iff |\nabla \phi| = 1$, $\kappa = \Delta \phi$).

Reminder: elliptic problem with jumps on the interface

- Elliptic problem
 - \bullet In the fluid:

$$abla \cdot (rac{1}{
ho}
abla p) = rac{
abla \cdot oldsymbol{u}^*}{\Delta t}.$$

(extrapolation of grid values for u^*)

• On the interface:

$$[p] = \sigma \kappa,$$
$$[\frac{\nabla p}{\rho}] = 0.$$

 \rightsquigarrow consistent (at least first-order) scheme for κ required.

Why using the distance function?

Objective: ensure consistency for the computation of κ AND low amplitude of the error.

- Example of computation of the curvature of a circle (second order FD formulas):
- with a level-set function with large and small gradients, $\nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|}\right)$,
- with the distance function, $\nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right),$
- with the distance function, $\Delta \phi$,
- reduction of the error by a factor 100.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Standard approach

ション ふゆ く は く は く む く む く し く

• transport of ϕ with \boldsymbol{u} , e.g.

$$\phi^* = \phi^n - \Delta t \ \boldsymbol{u}^n \nabla \phi^n,$$

• every 5 or 10 steps, reinitialize ϕ^* , e.g. with

$$\partial_{\tau}\phi + sign(\phi^*) \left(|\nabla \phi| - 1 \right) = 0,$$

$$\phi_{|\tau=0} = \phi^*.$$

• RK3-TVD scheme for τ , t, WENO-5 scheme for $\nabla \phi$,

•
$$\Delta \tau = \frac{\Delta x}{2}.$$

Main issues:

- WENO-5 scheme for reinitialization is not accurate enough near the interface,
- too many reinitialization steps,
- reinitialization steps might be too expansive.

Test case with large and small gradients

$$d = \sqrt{x^2 + y^2} - r_0$$

$$\phi_0 = \frac{d}{r_0} \left(\epsilon + (x - x_0)^2 + (y - y_0)^2 \right)$$

$$\Omega = (-1, 1)^2$$

$$r_0 = 0.6$$

$$\epsilon = 0.1, \ x_0 = -0.7, \ y_0 = -0.4$$

うせん 川田 ふぼう ふぼう ふしゃ

Test case with large and small gradients

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Accuracy of the standard approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reducing interface displacement

ション ふゆ マ キャット しょう くりく

Main issue : WENO scheme uses informations on the wrong side of the interface

Subcell fix (Russo & Smereka)

Modify scheme near the interface :

$$\phi_{i,j}^{n+1} = \phi_{i,j}^n - \frac{\Delta\tau}{\Delta x} \left(sign(\phi_{i,j}^0) |\phi_{i,j}^n| - d_{i,j}^n \right),$$

 $d_{i,j}^n$ approximate value of the signed distance.

 \rightsquigarrow 2nd order for the position of the interface.

Main idea : use informations on the interface (almost upwind scheme)

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Standard WENO-5 stencil for $D_x^- \phi_i : (x_{i-3}, x_{i-2}, \cdots, x_{i+2})$

- Away from the interface, use WENO scheme,
- close to the interface, use subcell fix with ENO scheme.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Standard WENO-5 stencil for $D_x^- \phi_i$: $(x_{i-3}, x_{i-2}, \cdots, x_{i+2})$

- Away from the interface, use WENO scheme,
- close to the interface, use subcell fix with ENO scheme.

Standard WENO-5 stencil for $D_x^- \phi_i$: $(x_{i-3}, x_{i-2}, \cdots, x_{i+2})$

- Away from the interface, use WENO scheme,
- close to the interface, use subcell fix with ENO scheme.

・ロト ・雪ト ・ヨト ・ヨト

ъ

Standard WENO-5 stencil for $D_x^-\phi_i$: $(x_{i-3}, x_{i-2}, \cdots, x_{i+2})$

- Away from the interface, use WENO scheme,
- close to the interface, use subcell fix with ENO scheme.

Global accuracy

WENO scheme

Global accuracy

Subcell fix of order 3

Accuracy near the interface

WENO scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Accuracy near the interface

Subcell fix of order 3

Coupling with transport

$$\Omega = (0, 1)^2$$

$$\phi_{|t=0} = \sqrt{((x - 0.5)^2 + (y - 0.75)^2)} - 0.15$$

$$u = \cos\left(\frac{\pi t}{T}\right) \nabla^{\perp} \omega$$

$$\omega = \sin(\pi x)^2 \sin(\pi y)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Coupling with transport (naive approach)

- evaluate spatial error in the scheme,
- previous example with T = 0.046875, results for t = T,
- $\Delta t = \Delta x^2$.

	every tim	le step	only 5 reinitializations		
Δx	err.	coc	err.	coc	
1/16	1.59e-02	-	2.76e-02	-	
1/32	5.07e-03	1.65	5.05e-03	2.45	
1/64	1.46e-04	5.12	8.48e-05	5.90	
1/128	3.22e-05	2.18	2.50e-06	5.09	
1/256	1.64e-04	-2.35	1.83e-07	3.77	

Table: L^{∞} error near the computed interface

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 \rightsquigarrow avoid reinitialization at every time step

How to control the number of reinitializations?

- Introduce $r_g := \||\nabla \phi| 1\|$,
- $r_g = 0$ for ϕ a distance function,
- while $r_g < \varepsilon$, use only transport for ϕ ,
- once $r_g \geq \varepsilon$, replace ϕ by the distance function.

mesh	L^{∞} error	coc	L^{∞} error	coc
40	$0.919E{+}00$	-	$0.108E{+}01$	-
80	$0.291\mathrm{E}{+00}$	1.66	$0.363E{+}00$	1.57
160	0.934E-01	1.64	0.921E-01	1.98
320	0.301E-01	1.64	0.343E-01	1.43
640	0.369E-02	3.03	0.422E-02	3.02

Table: Previous example with T=2, $\varepsilon = 0.1$. L^{∞} -errors on the curvature of the interface: at t = 2 (left) and t = 4 (right). For each computation : 16 reinitializations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Numerical illustration

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Figure: Previous example with T = 6 (600 time steps), $\varepsilon = 0.15$: without reinitialization (left), naive approach (middle, 600 reinitializations) and new strategy (right, 14 reinitializations).

Final strategy

Strategy based on the approximation of a continuous problem:

- *initialization:* start with ϕ the signed distance function,
- transport: as long as $r_g < \varepsilon$, evolve ϕ according to

$$\partial_t \phi + \boldsymbol{u} \cdot \nabla \phi = 0,$$

• reinitialization: if $r_g = \varepsilon$, replace ϕ by the distance function; go to transport.

Pros

• third order convergence for ϕ , first order convergence for κ ,

• ϕ remains close to a distance function \Rightarrow lower amplitudes of the error on κ .

Cons

• choice of ε ,

• requires a full computation of the distance function. Relaxation might be expansive \Rightarrow coupling relaxation method and fast-sweeping scheme away from the interface.

Add-on: Fast-Sweeping step

うして ふゆう ふほう ふほう ふしつ

Analogy with linear systems

Relaxation method \leftrightarrow relaxed Jacobi method, (very accurate near the interface, but slow),

Fast-Sweeping method \leftrightarrow Gauss-Seidel method, (very fast, but requires a good guess near the interface).

In practice

- Use relaxation method in a band of length $5\Delta x$,
- iterate until convergence in the narrow band,
- then Fast-Sweeping away from the interface,
- second order FS, with fixed number of iterations.

Add-on: numerical illustration

ション ふゆ アメリア メリア しょうくの

Previous reinitialization example.

mesh	$\ d-\phi_h\ $	coc	$\ \kappa - \kappa_h\ $	coc	number of it.
40	6.14E-04	-	5.97E-02	-	23
80	5.28E-05	3.54	2.65E-02	1.17	28
160	5.60E-06	3.24	1.25E-02	1.08	32
320	6.47E-07	3.11	6.29E-03	1.00	36
640	8.44E-08	2.94	3.17E-03	0.99	41

Table: Errors and computed order of convergence (coc) for the mixed method. L^{∞} -error in the narrow band on ϕ (left), L^{∞} -error on κ on the interface (middle) and total number of iterations (right).

- (not shown here) second order accuracy for the global error on ϕ ,
- with only relaxation, number of iterations $\sim 2/\Delta x$.

Conclusion

ション ふゆ マ キャット しょう くりく

- Development of sharp cartesian method for air-water interfaces with a second order treatment of the pressure,
- High order level-set technique, allowing consistent computation of the curvature of the interface, even for long times.

What's next:

- Coupling of the two techniques,
- Implementation, validation in 3D,
- Application to fluid-solid interaction.