A sharp cartesian method for the simulation of air-water interface

Lisl Weynans, Michel Bergmann, Francky Luddens

Institut de Mathématiques de Bordeaux \& INRIA Bordeaux-Sud Ouest

Numerical Analysis Seminar
Texas A\&M University Sept. 11th, 2014

Motivation: sharp simulation of air-water interface

- Starting point:
- NaSCar: a 3D parallel incompressible code with fluid-solid interaction
- a second order cartesian method to solve elliptic problems with discontinuities across interfaces
\Rightarrow adaptation of this method to solve accurately the pressure at the interface between fluids with strong density ratios
- Our aim: simulation of solids interacting with fluids with strong density ratios (air-water interface)
- wave breaking
- marine engineering
- wave energy converters

Bibliography

Only few sharp methods on cartesian grids in this context:

- Kang, Fedkiw and Liu 2000: application of the famous "Ghost Fluid Method", pioneering work, but non-physical effects due to poor momentum preservation for each fluid
- Raessi and Pitsch 2012: "cut-cell"-like method
- Zhou et al 2012: only for fixed interface

Figure 3: The phase interface Γ at time steps n and $n+1$ intersecting with a flux surface (dashed line).

Figure: Left: non physical behavior for dam-break problem (Kang et. al.), right: "cut-cell" interface reconstruction (Raessi and Pitsch)

Notations
$\Omega_{1}, \rho_{1}, \mu_{1}$

$\Omega_{2 \prime} \rho_{2 \prime} \mu_{2}$
\downarrow^{9}

Fluid model

- Incompressible Navier-Stokes equations in Ω_{1} and Ω_{2} :

$$
\begin{aligned}
& \rho\left(\boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right)=-\nabla p+(\nabla \cdot \tau)^{T}+\rho \boldsymbol{g} \\
& \nabla \cdot \boldsymbol{u}=0
\end{aligned}
$$

- Continuity of velocity and velocity divergence:

$$
\begin{aligned}
& {[u]=[v]=0} \\
& {\left[\left(u_{n}, v_{n}\right) \cdot \boldsymbol{n}\right]=0 .}
\end{aligned}
$$

- Jump conditions on Γ :

$$
\begin{aligned}
& {\left[\mu\left(u_{n}, v_{n}\right) \cdot \boldsymbol{\eta}+\mu\left(u_{\eta}, v_{\eta}\right) \cdot \boldsymbol{n}\right]=0} \\
& {[p]=\sigma \kappa+2[\mu]\left(u_{n}, v_{n}\right) \cdot \boldsymbol{n} .}
\end{aligned}
$$

- Material derivative of the velocity continuity

$$
\left[\frac{\nabla p}{\rho}\right]=\left[\frac{(\nabla \cdot \tau)^{T}}{\rho}\right]
$$

Discretization

- In the fluid, all variables on the same grid points
- Possible corrective term to avoid parasitic modes of the pressure

Numerical scheme in the fluid

Predictor-corrector scheme:

- Prediction (we take $p=0$)

$$
\frac{\boldsymbol{u}^{*}-\boldsymbol{u}^{n}}{\Delta t}=-[(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}]^{n+\frac{1}{2}}+\frac{\left(\nabla \cdot \tau^{n}\right)^{T}}{\rho}-\boldsymbol{g}
$$

- Resolution of ellliptic equation

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\frac{\nabla \cdot \boldsymbol{u}^{*}}{\Delta t}
$$

- Correction

$$
\boldsymbol{u}^{n+1}=\boldsymbol{u}^{*}-\frac{\Delta t}{\rho} \nabla p
$$

Why do we take $p=0$ in prediction step?

$$
[p]=\sigma \kappa+2[\mu]\left(u_{n}, v_{n}\right) . \boldsymbol{n} .
$$

$\Rightarrow p$ possibly discontinuous if the interface crosses a grid point during Δt

Numerical scheme in the fluid

- Prediction

$$
\frac{\boldsymbol{u}^{*}-\boldsymbol{u}^{n}}{\Delta t}=-[(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}]^{n+\frac{1}{2}}+\frac{\left(\nabla \cdot \tau^{n}\right)^{T}}{\rho}-\boldsymbol{g}
$$

- Correction :

$$
\boldsymbol{u}^{n+1}=\boldsymbol{u}^{*}-\frac{\Delta t}{\rho} \nabla p
$$

Discretization near the interface

- Prediction
$\frac{\boldsymbol{u}^{*}-\boldsymbol{u}^{n}}{\Delta t}=-[(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}]^{n+\frac{1}{2}}+\frac{\left(\nabla \cdot \tau^{n}\right)^{T}}{\rho}-\boldsymbol{g}$
- Diffusion: derivative of velocity discontinuous
\Rightarrow lack of consistency
- Convection:

WENO 5 naturally adaptative, continuous velocity
\Rightarrow less worrying

Discretization near the interface

- Elliptic equation:

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\frac{\nabla \cdot \boldsymbol{u}^{*}}{\Delta t}
$$

Discontinuity of ρ, jump conditions \Rightarrow lack of consistency

- Correction :

$$
\boldsymbol{u}^{n+1}=\boldsymbol{u}^{*}-\frac{\Delta t}{\rho} \nabla p
$$

Discontinuity of ρ and ψ
\Rightarrow lack of consistency

Discretization near the interface

Our solution:

- Creation of additional unknowns for u^{*} and p on the interface, used for a sharp resolution of the pressure
- Regularization of μ and ρ only to account for viscous terms
\rightarrow no discontinuity any more in viscous terms

Discretization near the interface

- Elliptic problem
- In the fluid:

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\frac{\nabla \cdot \boldsymbol{u}^{*}}{\Delta t}
$$

(extrapolation of grid values for u^{*})

- On the interface:

$$
\begin{aligned}
& {[p]=\sigma \kappa} \\
& {\left[\frac{\nabla p}{\rho}\right]=0}
\end{aligned}
$$

Interlude: elliptic problems with immersed interfaces

$$
\begin{aligned}
\nabla \cdot(k \nabla u) & =f \text { on } \Omega=\Omega_{1} \cup \Omega_{2} \\
\llbracket u \rrbracket & =\alpha \text { on } \Sigma \\
\llbracket k \frac{\partial u}{\partial n} \rrbracket & =\beta \text { on } \Sigma \\
u & =g \text { on } \delta \Omega
\end{aligned}
$$

Discretization strategy

Creation of additional unknowns on the interface:

- used to discretize the elliptic operator on each side of the interface
- obtained by a discretization of jump conditions across the interface

Which accuracy is needed near the interface?

To obtain a second order convergence (in max norm), we need:

- a first-order truncation error for the elliptic operator near the interface \Rightarrow avoid linear extrapolations (for instance: ghost-cell like)
- a second-order truncation error of the fluxes discretization \Rightarrow use of an expanded stencil

Figure: Examples of stencils for the discretization of elliptic operator and fluxes on each side of the interface.

Rising of a small air bubble in water

Water: $\rho=1000 \mathrm{~kg} / m^{3}, \mu=1,137.10^{-3} \mathrm{~kg} / \mathrm{ms}$, Air: $\rho=1 \mathrm{~kg} / m^{3}, \mu=1,78.10^{-5} \mathrm{~kg} / \mathrm{ms}$, $\sigma=0.0728 \mathrm{~kg} / \mathrm{s}^{2}$, bubble radius $1 / 300 \mathrm{~m}, T f=0.05 \mathrm{~s}$.

Rising of a large air bubble in water

Water: $\rho=1000 \mathrm{~kg} / m^{3}, \mu=1,137.10^{-3} \mathrm{~kg} / \mathrm{ms}$, Air: $\rho=1 \mathrm{~kg} / m^{3}, \mu=1,78.10^{-5} \mathrm{~kg} / \mathrm{ms}$, $\sigma=0.0728 \mathrm{~kg} / \mathrm{s}^{2}$, bubble radius $1 / 3 \mathrm{~m}, T f=0.5 \mathrm{~s}$.

Dam break problem

Water: $\rho=1000 \mathrm{~kg} / m^{3}, \mu=1,137 \cdot 10^{-3} \mathrm{~kg} / \mathrm{ms}$,
Air: $\rho=1,226 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1,78.10^{-5} \mathrm{~kg} / \mathrm{ms}$,
$\sigma=0.0728 \mathrm{~kg} / \mathrm{s}^{2}$, height of water column $h=5.715 \mathrm{~cm}$, domain $40 \times 10 \mathrm{~cm}$

Sharp capture of the interface: level-set approach

- Γ captured as $\{\phi=0\}$ with ϕ defined over Ω,
- easily handle complex geometries,
- straightforward computation of geometric properties:

$$
\boldsymbol{n}=\nabla \phi, \quad \kappa=\nabla \cdot\left(\frac{\nabla \phi}{|\nabla \phi|}\right),
$$

- transport of Γ with the flow \boldsymbol{u},
- in practice, ϕ is the signed distance to $\Gamma(\Rightarrow|\nabla \phi|=1, \kappa=\Delta \phi)$.

Reminder: elliptic problem with jumps on the interface

- Elliptic problem
- In the fluid:

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\frac{\nabla \cdot \boldsymbol{u}^{*}}{\Delta t}
$$

(extrapolation of grid values for u^{*})

- On the interface:

$$
\begin{aligned}
& {[p]=\sigma \kappa} \\
& {\left[\frac{\nabla p}{\rho}\right]=0}
\end{aligned}
$$

\rightsquigarrow consistent (at least first-order) scheme for κ required.

Why using the distance function?

Objective: ensure consistency for the computation of κ AND low amplitude of the error.

- Example of computation of the curvature of a circle (second order FD formulas):
- with a level-set function with large and small gradients, $\nabla \cdot\left(\frac{\nabla \phi}{|\nabla \phi|}\right)$,
- with the distance function, $\nabla \cdot\left(\frac{\nabla \phi}{|\nabla \phi|}\right)$,
- with the distance function,
 $\Delta \phi$,
- reduction of the error by a factor 100 .

Standard approach

- transport of ϕ with \boldsymbol{u}, e.g.

$$
\phi^{*}=\phi^{n}-\Delta t \boldsymbol{u}^{n} \nabla \phi^{n}
$$

- every 5 or 10 steps, reinitialize ϕ^{*}, e.g. with

$$
\begin{aligned}
& \partial_{\tau} \phi+\operatorname{sign}\left(\phi^{*}\right)(|\nabla \phi|-1)=0, \\
& \phi_{\mid \tau=0}=\phi^{*} .
\end{aligned}
$$

- RK3-TVD scheme for τ, t, WENO-5 scheme for $\nabla \phi$,
- $\Delta \tau=\frac{\Delta x}{2}$.

Main issues:

- WENO-5 scheme for reinitialization is not accurate enough near the interface,
- too many reinitialization steps,
- reinitialization steps might be too expansive.

Test case with large and small gradients

$$
\begin{aligned}
& d=\sqrt{x^{2}+y^{2}}-r_{0} \\
& \phi_{0}=\frac{d}{r_{0}}\left(\epsilon+\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right) \\
& \Omega=(-1,1)^{2} \\
& r_{0}=0.6 \\
& \epsilon=0.1, x_{0}=-0.7, y_{0}=-0.4
\end{aligned}
$$

Test case with large and small gradients

Accuracy of the standard approach

Reducing interface displacement

Main issue : WENO scheme uses informations on the wrong side of the interface

Subcell fix (Russo \& Smereka)
Modify scheme near the interface :

$$
\phi_{i, j}^{n+1}=\phi_{i, j}^{n}-\frac{\Delta \tau}{\Delta x}\left(\operatorname{sign}\left(\phi_{i, j}^{0}\right)\left|\phi_{i, j}^{n}\right|-d_{i, j}^{n}\right),
$$

$d_{i, j}^{n}$ approximate value of the signed distance.
$\rightsquigarrow 2$ nd order for the position of the interface.
Main idea : use informations on the interface (almost upwind scheme)

Reducing interface displacement (high order)

Standard WENO-5 stencil for $D_{x}^{-} \phi_{i}:\left(x_{i-3}, x_{i-2}, \cdots, x_{i+2}\right)$
Use point A in the stencil : $\left(x_{i-2}, x_{i-1}, x_{A}, x_{i}, x_{i+1}, x_{i+2}\right)$.
ENO scheme of high-order (Russo \& Smereka, Gibou et al, Sussman \& Fatemi).

- Away from the interface, use WENO scheme,
- close to the interface, use subcell fix with ENO scheme.

Reducing interface displacement (high order)

Standard WENO-5 stencil for $D_{x}^{-} \phi_{i}:\left(x_{i-3}, x_{i-2}, \cdots, x_{i+2}\right)$
Use point A in the stencil: $\left(x_{i-2}, x_{i-1}, x_{A}, x_{i}, x_{i+1}, x_{i+2}\right)$.
ENO scheme of high-order (Russo \& Smereka, Gibou et al, Sussman \& Fatemi).

- Away from the interface, use WENO scheme,
- close to the interface, use subcell fix with ENO scheme.

Reducing interface displacement (high order)

Standard WENO-5 stencil for $D_{x}^{-} \phi_{i}:\left(x_{i-3}, x_{i-2}, \cdots, x_{i+2}\right)$
Use point A in the stencil: $\left(x_{i-2}, x_{i-1}, x_{A}, x_{i}, x_{i+1}, x_{i+2}\right)$.
ENO scheme of high-order (Russo \& Smereka, Gibou et al, Sussman \& Fatemi).

Reducing interface displacement (high order)

Standard WENO-5 stencil for $D_{x}^{-} \phi_{i}:\left(x_{i-3}, x_{i-2}, \cdots, x_{i+2}\right)$
Use point A in the stencil: $\left(x_{i-2}, x_{i-1}, x_{A}, x_{i}, x_{i+1}, x_{i+2}\right)$.
ENO scheme of high-order (Russo \& Smereka, Gibou et al, Sussman \& Fatemi).

- Away from the interface, use WENO scheme,
- close to the interface, use subcell fix with ENO scheme.

Global accuracy

WENO scheme

Global accuracy

Subcell fix of order 3

Accuracy near the interface

WENO scheme

Accuracy near the interface

Subcell fix of order 3

Coupling with transport

$$
\begin{aligned}
& \Omega=(0,1)^{2} \\
& \phi_{\mid t=0}=\sqrt{\left((x-0.5)^{2}+(y-0.75)^{2}\right)}-0.15 \\
& \boldsymbol{u}=\cos \left(\frac{\pi t}{T}\right) \nabla^{\perp} \omega \\
& \omega=\sin (\pi x)^{2} \sin (\pi y)^{2}
\end{aligned}
$$

Coupling with transport (naive approach)

- evaluate spatial error in the scheme,
- previous example with $T=0.046875$, results for $t=T$,
- $\Delta t=\Delta x^{2}$.

	every time step		only 5 reinitializations	
Δx	err.	coc	err.	coc
$1 / 16$	$1.59 \mathrm{e}-02$	-	$2.76 \mathrm{e}-02$	-
$1 / 32$	$5.07 \mathrm{e}-03$	1.65	$5.05 \mathrm{e}-03$	2.45
$1 / 64$	$1.46 \mathrm{e}-04$	5.12	$8.48 \mathrm{e}-05$	5.90
$1 / 128$	$3.22 \mathrm{e}-05$	2.18	$2.50 \mathrm{e}-06$	5.09
$1 / 256$	$1.64 \mathrm{e}-04$	-2.35	$1.83 \mathrm{e}-07$	3.77

Table: L^{∞} error near the computed interface
\rightsquigarrow avoid reinitialization at every time step

How to control the number of reinitializations?

- Introduce $r_{g}:=\||\nabla \phi|-1\|$,
- $r_{g}=0$ for ϕ a distance function,
- while $r_{g}<\varepsilon$, use only transport for ϕ,
- once $r_{g} \geq \varepsilon$, replace ϕ by the distance function.

mesh	L^{∞} error	coc	L^{∞} error	coc
40	$0.919 \mathrm{E}+00$	-	$0.108 \mathrm{E}+01$	-
80	$0.291 \mathrm{E}+00$	1.66	$0.363 \mathrm{E}+00$	1.57
160	$0.934 \mathrm{E}-01$	1.64	$0.921 \mathrm{E}-01$	1.98
320	$0.301 \mathrm{E}-01$	1.64	$0.343 \mathrm{E}-01$	1.43
640	$0.369 \mathrm{E}-02$	3.03	$0.422 \mathrm{E}-02$	3.02

Table: Previous example with $\mathrm{T}=2, \varepsilon=0.1 . L^{\infty}$-errors on the curvature of the interface: at $t=2$ (left) and $t=4$ (right). For each computation : 16 reinitializations.

Numerical illustration

Figure: Previous example with $T=6$ (600 time steps), $\varepsilon=0.15$: without reinitialization (left), naive approach (middle, 600 reinitializations) and new strategy (right, 14 reinitializations).

Final strategy

Strategy based on the approximation of a continuous problem:

- initialization: start with ϕ the signed distance function,
- transport: as long as $r_{g}<\varepsilon$, evolve ϕ according to

$$
\partial_{t} \phi+\boldsymbol{u} \cdot \nabla \phi=0
$$

- reinitialization: if $r_{g}=\varepsilon$, replace ϕ by the distance function; go to transport.

Pros

- third order convergence for ϕ, first order convergence for κ,
- ϕ remains close to a distance function \Rightarrow lower amplitudes of the error on κ.

Cons

- choice of ε,
- requires a full computation of the distance function. Relaxation might be expansive \Rightarrow coupling relaxation method and fast-sweeping scheme away from the interface.

Add-on: Fast-Sweeping step

Analogy with linear systems

> Relaxation method \leftrightarrow relaxed Jacobi method, (very accurate near the interface, but slow),
> Fast-Sweeping method \leftrightarrow Gauss-Seidel method, (very fast, but requires a good guess near the interface).

In practice

- Use relaxation method in a band of length $5 \Delta x$,
- iterate until convergence in the narrow band,
- then Fast-Sweeping away from the interface,
- second order FS, with fixed number of iterations.

Add-on: numerical illustration

Previous reinitialization example.

mesh	$\left\\|d-\phi_{h}\right\\|$	coc	$\left\\|\kappa-\kappa_{h}\right\\|$	coc	number of it.
40	$6.14 \mathrm{E}-04$	-	$5.97 \mathrm{E}-02$	-	23
80	$5.28 \mathrm{E}-05$	3.54	$2.65 \mathrm{E}-02$	1.17	28
160	$5.60 \mathrm{E}-06$	3.24	$1.25 \mathrm{E}-02$	1.08	32
320	$6.47 \mathrm{E}-07$	3.11	$6.29 \mathrm{E}-03$	1.00	36
640	$8.44 \mathrm{E}-08$	2.94	$3.17 \mathrm{E}-03$	0.99	41

Table: Errors and computed order of convergence (coc) for the mixed method. L^{∞}-error in the narrow band on ϕ (left), L^{∞}-error on κ on the interface (middle) and total number of iterations (right).

- (not shown here) second order accuracy for the global error on ϕ,
- with only relaxation, number of iterations $\sim 2 / \Delta x$.

Conclusion

- Development of sharp cartesian method for air-water interfaces with a second order treatment of the pressure,
- High order level-set technique, allowing consistent computation of the curvature of the interface, even for long times.

What's next:

- Coupling of the two techniques,
- Implementation, validation in 3D,
- Application to fluid-solid interaction.

