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Motivation: sharp simulation of air-water interface

e Starting point:
e NaSCar: a 3D parallel incompressible code with fluid-solid interaction
e a second order cartesian method to solve elliptic problems with
discontinuities across interfaces
=-adaptation of this method to solve accurately the pressure at the
interface between fluids with strong density ratios

e Our aim: simulation of solids interacting with fluids with strong
density ratios (air-water interface)
e wave breaking
e marine engineering
e wave energy converters




Bibliography

Only few sharp methods on cartesian grids in this context:

e Kang, Fedkiw and Liu 2000:
application of the famous "Ghost Fluid Method",
pioneering work, but non-physical effects due to poor momentum
preservation for each fluid

e Raessi and Pitsch 2012: "cut-cell"-like method
e Zhou et al 2012: only for fixed interface
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Figure 3: The phase interface T at time steps 7 and n + 1 intersecting with a flux surface
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Figure: Left: non physical behavior for dam-break problem (Kang et. al.), right:
"cut-cell" interface reconstruction (Raessi and Pitsch)
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Fluid model

Incompressible Navier-Stokes equations in £2; and €3 :

plus + (w- V)u) = =Vp+ (V.71)" + pg,
V-u=0

Continuity of velocity and velocity divergence:

[u] = [v] =0,

[(un,vn).n] =0.
Jump conditions on I':

[(un, vn) .0 + p(un, vy).n] =0,
[p] = ok + 2[p](un, vn).n.

Material derivative of the velocity continuity

Yp| _ (V1)

P p]'



Discretization

e In the fluid, all variables on the same grid points

e Possible corrective term to avoid parasitic modes of the pressure




Numerical scheme in the fluid

Predictor-corrector scheme:

e Prediction (we take p = 0)

u" —u” 1 (vt

= —[(u- ntyg 4 MY )
A7 [(w- V)u]""2 + p g
e Resolution of ellliptic equation
1 V-u*
V- (=Vp) =
(p p) At

e Correction

u" =t — ng

p



Why do we take p = 0 in prediction step?

[p] = ok + 2[p](un, vn). 1.

= p possibly discontinuous if the interface crosses a grid point during At




Numerical scheme in the fluid

e Prediction centefed ofder

P
v
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e Elliptic equation: ~
1 V-u* ~l N
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e Correction : f“z
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Discretization near the interface

e Prediction

u' —u”

At p

(v.rm)T

e Diffusion:
derivative of velocity discontinuous

= lack of consistency
e Convection:

WENO 5 naturally adaptative,
continuous velocity

= less worrying

= —[(u- V)"t 4 T g

entered ofder 2: consistency |problem
=
|
——
END 5: pk because adaptivie stencil




Discretization near the interface

e Elliptic equation:

1 V- u”
v (;vp) - At centered ofder 2: cohsistency |probjem
Discontinuity of p, jump conditions N
= lack of consistency
A
e Correction : —~——
At
" =ut - 22vp
P

Discontinuity of p and 1/] WENOD 5: ok because adapti

e ste

ncil

= lack of consistency




Discretization near the interface

Our solution:

e Creation of additional unknowns for u* N

and p on the interface, used for a sharp /(' N

resolution of the pressure

e Regularization of p and p only to

account for viscous terms

— no discontinuity any more in viscous

terms




Discretization near the interface

e Elliptic problem

o In the fluid:

V- -u*

1

(extrapolation of grid values for u*)

e On the interface:




Interlude: elliptic problems with immersed interfaces

V.(kVu)=fonQ=Q2UQ
[u] =@ on X

ou
Uy = b
[[kan]] fon
u = g on 62



Discretization strategy
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Creation of additional unknowns on the interface:
e used to discretize the elliptic operator on each side of the interface

e obtained by a discretization of jump conditions across the interface



Which accuracy is needed near the interface?

To obtain a second order convergence (in max norm), we need:

e a first-order truncation error for the elliptic operator near the interface
= avoid linear extrapolations (for instance: ghost-cell like)

e a second-order truncation error of the fluxes discretization
= use of an expanded stencil
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Figure: Examples of stencils for the discretization of elliptic operator and fluxes
on each side of the interface.



Rising of a small air bubble in water

u_velocity v_velocity
0.210839 0.18945

0.2 ;
r.w 0.1

-0.2
-0.250626

Water: p = 1000 kg/m?, p = 1,137.107% kg/ms,
Air: p = 1kg/m®, p=1,78.107° kg/ms,
o = 0.0728 kg/s?, bubble radius 1/300 m, T'f = 0.05s.



Rising of a large air bubble in water

u_velocity v_velocity
1.878896 2463311

o

Water: p = 1000 kg/m?, p = 1,137.107% kg/ms,
Air: p = 1kg/m®, p=1,78.107° kg/ms,
o = 0.0728 kg/s, bubble radius 1/3 m, Tf = 0.5s.



Dam break problem

-0.23357

Water: p = 1000 kg/m?, p = 1,137.107% kg/ms,
Air: p = 1,226kg/m?>, u=1,78.107° kg/ms,
o = 0.0728 kg/s?, height of water column h = 5.715 cm, domain 40 x 10 cm



Sharp capture of the interface: level-set approach
e I' captured as {¢ = 0} with ¢
defined over €2, “ "
e easily handle complex geometries,
e transport of I" with the flow w,

e in practice, ¢ is the signed distance to I (= |V¢| =1, k= Ag).

e straightforward computation of
geometric properties:

V¢

Vel

n =Vao, H_V(



Reminder: elliptic problem with jumps on the

e Elliptic problem
e In the fluid:

V- -u*

1

(extrapolation of grid values for u*)

e On the interface:

interface

~ consistent (at least first-order) scheme for s required.




Why using the distance function?

Objective: ensure consistency for
the computation of kK AND low
amplitude of the error.

Example of computation of
the curvature of a circle
(second order FD formulas):

with a level-set function with
large and small gradients,

(Y

V(%5

with the distance function,
(Y

V(%5

with the distance function,

Ad,

reduction of the error by
a factor 100.

initial level set (C) —+—
distance (C) —¢—
distance (L) —»—

35

7.5



Standard approach

e transport of ¢ with u, e.g.
" =¢" — At u"Vo",
e every 5 or 10 steps, reinitialize ¢*, e.g. with

0r¢ + sign(¢”) (Vo — 1) =0,

¢|T:O = ¢*
e RK3-TVD scheme for 7, t, WENO-5 scheme for V¢,
Ax
AT = —/.
[ ] T 2

Main issues:

o WENO-5 scheme for reinitialization is not accurate enough near the
interface,

e too many reinitialization steps,

e reinitialization steps might be too expansive.



Test case with large and small gradients

d=+Vz2+y%2—ro

$o = T (e+ (. —0)” + (y — w0)?)
Q=(-1,1)°

To = 0.6

e=0.1, xro = —0.7, yo = —04



Test case with large and small gradients




L1-norm

Accuracy of the standard approach

0.5

fictitious time

position of the interface

fictitious time.




Reducing interface displacement

Main issue : WENO scheme uses informations on the wrong side of the
interface

Subcell fix (Russo & Smereka)

Modify scheme near the interface :
AT
n+1 n . 0 n n
bij =i~ A, (sign(¢i ;)95 — di;) s
d ; approximate value of the signed distance.

~~ 2nd order for the position of the interface.

Main idea : use informations on the interface (almost upwind scheme)



Reducing interface displacement (high order)

i-2 i-1 /i i+1 i+2

SN



Reducing interface displacement (high order)

i-3 i-2 i-1 /i i+1 i+2

SN

Standard WENO-5 stencil for Dy ¢; : (xi—3, Ti—2, " , Tit2)



Reducing interface displacement (high order)

/ i-2 i-1 /i i+1 i+2

N

Standard WENO-5 stencil for Dy ¢; : (xi—3, Ti—2, " , Tit2)

Use point A in the stencil : (zi—2,%i—1,%A, Ti, Tit1, Tit2).
ENO scheme of high-order (Russo & Smereka, Gibou et al, Sussman &
Fatemi).



Reducing interface displacement (high order)

/ i-2 i-1 /i i+1 i+2

N

Standard WENO-5 stencil for Dy ¢; : (xi—3, Ti—2, " , Tit2)

Use point A in the stencil : (zi—2,%i—1,%A, Ti, Tit1, Tit2).
ENO scheme of high-order (Russo & Smereka, Gibou et al, Sussman &
Fatemi).

e Away from the interface, use WENO scheme,

e close to the interface, use subcell fix with ENO scheme.



Global accuracy

L1-norm

R = A T T T
m o ©dud bk s o

=
3]

KR
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N
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fictitious time

WENO scheme



Global accuracy

L1 error

fictitious time

Subcell fix of order 3
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Accuracy near the interface

position of the interface

14 i i i
0 0.5 1 1.5 2

fictitious time

WENO scheme



Accuracy near the interface

position of the interface

30 i i i
0 0.5 1 15 2

fictitious time

Subcell fix of order 3



Coupling with transport

Q=(0,1)°

Bli—0 = V/((x — 0.5)2 + (y — 0.75)2) — 0.15

U = Cos (%t) Viw

w = sin(rz)? sin(ny)?

DA



Coupling with transport (naive approach)

e evaluate spatial error in the scheme,
e previous example with 7" = 0.046875, results for t = T,
o At = Az

every time step || only 5 reinitializations
Ax err. coc err. coc
1/16 | 1.59e-02 - 2.76e-02 -
1/32 | 5.07e-03 | 1.65 || 5.05e-03 2.45
1/64 | 1.46e-04 | 5.12 || 8.48e-05 5.90
1/128 | 3.22e¢-05 | 2.18 || 2.50e-06 5.09
1/256 | 1.64e-04 | -2.35 || 1.83e-07 3.77

Table: L°° error near the computed interface

~~ avoid reinitialization at every time step



How to control the number of reinitializations?

Introduce ry := |||V¢| — 1],

rqy = 0 for ¢ a distance function,

while r4 < €, use only transport for ¢,

e once 4 > €, replace ¢ by the distance function.

mesh L*° error coc L*° error coc
40 0.919E-+00 - 0.108E-+01 -
80 0.291E+00 | 1.66 || 0.363E+00 | 1.57
160 0.934E-01 1.64 0.921E-01 1.98
320 0.301E-01 1.64 0.343E-01 1.43
640 0.369E-02 3.03 0.422E-02 3.02

Table: Previous example with T=2, ¢ = 0.1. L°-errors on the curvature of the
interface: at t = 2 (left) and ¢ = 4 (right). For each computation : 16
reinitializations.



Numerical illustration

Figure: Previous example with 7' = 6 (600 time steps), ¢ = 0.15: without
reinitialization (left), naive approach (middle, 600 reinitializations) and new
strategy (right, 14 reinitializations).

DA



Final strategy

Strategy based on the approximation of a continuous problem:
e initialization: start with ¢ the signed distance function,

e transport: as long as r4 < €, evolve ¢ according to

Op+u-Vo =0,
o reinitialization: if ry = e, replace ¢ by the distance function; go to
transport.
Pros

e third order convergence for ¢, first order convergence for s,
e ¢ remains close to a distance function = lower amplitudes of the error on
K.

Cons

e choice of ¢,

e requires a full computation of the distance function. Relaxation might be
expansive = coupling relaxation method and fast-sweeping scheme away
from the interface.



Add-on: Fast-Sweeping step

Analogy with linear systems
Relaxation method <> relaxed Jacobi method,
(very accurate near the interface, but slow),

Fast-Sweeping method <> Gauss-Seidel method,
(very fast, but requires a good guess near the interface).

In practice

e Use relaxation method in a band of length 5Axz,
e iterate until convergence in the narrow band,
e then Fast-Sweeping away from the interface,

e second order F'S; with fixed number of iterations.



Add-on: numerical illustration

Previous reinitialization example.

mesh || ||d—¢n|| | coc || ||k —&n|] | coc || number of it.

40 6.14E-04 - 5.97E-02 - 23

80 5.28E-05 | 3.54 || 2.65E-02 | 1.17 28

160 5.60E-06 | 3.24 || 1.25E-02 | 1.08 32

320 6.47E-07 | 3.11 || 6.29E-03 | 1.00 36

640 8.44E-08 | 2.94 || 3.17E-03 | 0.99 41

Table: Errors and computed order of convergence (coc) for the mixed method.
L®°-error in the narrow band on ¢ (left), L°-error on  on the interface (middle)
and total number of iterations (right).

e (not shown here) second order accuracy for the global error on ¢,

e with only relaxation, number of iterations ~ 2/Az.



Conclusion

e Development of sharp cartesian method for air-water interfaces with a
second order treatment of the pressure,

e High order level-set technique, allowing consistent computation of the
curvature of the interface, even for long times.

What’s next:

e Coupling of the two techniques,
e Implementation, validation in 3D,

e Application to fluid-solid interaction.
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