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Motivation: sharp simulation of air-water interface

• Starting point:
• NaSCar: a 3D parallel incompressible code with fluid-solid interaction
• a second order cartesian method to solve elliptic problems with

discontinuities across interfaces

⇒adaptation of this method to solve accurately the pressure at the
interface between fluids with strong density ratios

• Our aim: simulation of solids interacting with fluids with strong
density ratios (air-water interface)

• wave breaking
• marine engineering
• wave energy converters



Bibliography
Only few sharp methods on cartesian grids in this context:
• Kang, Fedkiw and Liu 2000:

application of the famous "Ghost Fluid Method",
pioneering work, but non-physical effects due to poor momentum
preservation for each fluid
• Raessi and Pitsch 2012: "cut-cell"-like method
• Zhou et al 2012: only for fixed interface

Figure: Left: non physical behavior for dam-break problem (Kang et. al.), right:
"cut-cell" interface reconstruction (Raessi and Pitsch)
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Fluid model

• Incompressible Navier-Stokes equations in Ω1 and Ω2 :

ρ(ut + (u · ∇)u) = −∇p+ (∇.τ)T + ρg,

∇ · u = 0

• Continuity of velocity and velocity divergence:

[u] = [v] = 0,

[(un, vn).n] = 0.

• Jump conditions on Γ:

[µ(un, vn).η + µ(uη, vη).n] = 0,

[p] = σκ+ 2[µ](un, vn).n.

• Material derivative of the velocity continuity

[
∇p
ρ

] = [
(∇.τ)T

ρ
].



Discretization

• In the fluid, all variables on the same grid points
• Possible corrective term to avoid parasitic modes of the pressure

u p ρ, , φ,



Numerical scheme in the fluid

Predictor-corrector scheme:

• Prediction (we take p = 0)

u∗ − un

∆t
= −[(u · ∇)u]n+

1
2 +

(∇.τn)T

ρ
− g

• Resolution of ellliptic equation

∇ · ( 1

ρ
∇p) =

∇ · u∗

∆t

• Correction

un+1 = u∗ − ∆t

ρ
∇p



Why do we take p = 0 in prediction step?

[p] = σκ+ 2[µ](un, vn).n.

⇒ p possibly discontinuous if the interface crosses a grid point during ∆t

? ? ?



Numerical scheme in the fluid

• Prediction

u∗ − un
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• Elliptic equation:

∇ · ( 1
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Discretization near the interface

• Prediction

u∗ − un

∆t
= −[(u · ∇)u]n+

1
2 +

(∇.τn)T

ρ
− g

• Diffusion:
derivative of velocity discontinuous
⇒ lack of consistency

• Convection:
WENO 5 naturally adaptative,
continuous velocity
⇒ less worrying

WENO 5: ok because adaptive stencil

centered order 2: consistency problem



Discretization near the interface

• Elliptic equation:

∇ · ( 1

ρ
∇p) =

∇ · u∗

∆t

Discontinuity of ρ, jump conditions
⇒ lack of consistency

• Correction :

un+1 = u∗ − ∆t

ρ
∇p

Discontinuity of ρ and ψ
⇒ lack of consistency

WENO 5: ok because adaptive stencil

centered order 2: consistency problem



Discretization near the interface

Our solution:

• Creation of additional unknowns for u∗

and p on the interface, used for a sharp
resolution of the pressure

• Regularization of µ and ρ only to
account for viscous terms
→ no discontinuity any more in viscous
terms



Discretization near the interface

• Elliptic problem

• In the fluid:

∇ · ( 1

ρ
∇p) =

∇ · u∗

∆t
.

(extrapolation of grid values for u∗)

• On the interface:

[p] = σ κ,

[
∇p
ρ

] = 0.



Interlude: elliptic problems with immersed interfaces

∇.(k∇u) = f on Ω = Ω1 ∪ Ω2

JuK = α on Σ

Jk
∂u

∂n
K = β on Σ

u = g on δΩ

1

2
δ

Ω
Ω

Ω

Ω

Σ



Discretization strategy

j
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j-1

ii-1 i+1 i+2

Creation of additional unknowns on the interface:
• used to discretize the elliptic operator on each side of the interface
• obtained by a discretization of jump conditions across the interface



Which accuracy is needed near the interface?

To obtain a second order convergence (in max norm), we need:
• a first-order truncation error for the elliptic operator near the interface
⇒ avoid linear extrapolations (for instance: ghost-cell like)

• a second-order truncation error of the fluxes discretization
⇒ use of an expanded stencil

j

j+1

j-1

ii-1 i+1 i+2
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j
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Figure: Examples of stencils for the discretization of elliptic operator and fluxes
on each side of the interface.



Rising of a small air bubble in water

Water: ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms,
Air: ρ = 1kg/m3, µ = 1, 78.10−5 kg/ms,

σ = 0.0728 kg/s2, bubble radius 1/300 m, Tf = 0.05s.



Rising of a large air bubble in water

Water: ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms,
Air: ρ = 1kg/m3, µ = 1, 78.10−5 kg/ms,

σ = 0.0728 kg/s2, bubble radius 1/3 m, Tf = 0.5s.



Dam break problem

Water: ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms,
Air: ρ = 1, 226kg/m3, µ = 1, 78.10−5 kg/ms,

σ = 0.0728 kg/s2, height of water column h = 5.715 cm, domain 40× 10 cm



Sharp capture of the interface: level-set approach

• Γ captured as {φ = 0} with φ
defined over Ω,
• easily handle complex geometries,
• straightforward computation of

geometric properties:

n = ∇φ, κ = ∇·
(
∇φ
|∇φ|

)
,

• transport of Γ with the flow u,
• in practice, φ is the signed distance to Γ (⇒ |∇φ| = 1, κ = ∆φ).



Reminder: elliptic problem with jumps on the
interface

• Elliptic problem

• In the fluid:

∇ · ( 1

ρ
∇p) =

∇ · u∗

∆t
.

(extrapolation of grid values for u∗)

• On the interface:

[p] = σ κ,

[
∇p
ρ

] = 0.

 consistent (at least first-order) scheme for κ required.



Why using the distance function?

Objective: ensure consistency for
the computation of κ AND low
amplitude of the error.

• Example of computation of
the curvature of a circle
(second order FD formulas):

• with a level-set function with
large and small gradients,
∇·
(
∇φ
|∇φ|

)
,

• with the distance function,
∇·
(
∇φ
|∇φ|

)
,

• with the distance function,
∆φ,

• reduction of the error by
a factor 100.



Standard approach

• transport of φ with u, e.g.

φ∗ = φn −∆t un∇φn,

• every 5 or 10 steps, reinitialize φ∗, e.g. with

∂τφ+ sign(φ∗) (|∇φ| − 1) = 0,

φ|τ=0 = φ∗.

• RK3-TVD scheme for τ , t, WENO-5 scheme for ∇φ,

• ∆τ =
∆x

2
.

Main issues:
• WENO-5 scheme for reinitialization is not accurate enough near the
interface,

• too many reinitialization steps,
• reinitialization steps might be too expansive.



Test case with large and small gradients

d =
√
x2 + y2 − r0

φ0 =
d

r0

(
ε+ (x− x0)2 + (y − y0)2

)
Ω = (−1, 1)2

r0 = 0.6

ε = 0.1, x0 = −0.7, y0 = −0.4



Test case with large and small gradients



Accuracy of the standard approach



Reducing interface displacement

Main issue : WENO scheme uses informations on the wrong side of the
interface

Subcell fix (Russo & Smereka)
Modify scheme near the interface :

φn+1
i,j = φni,j −

∆τ

∆x

(
sign(φ0

i,j)|φni,j | − dni,j
)
,

dni,j approximate value of the signed distance.

 2nd order for the position of the interface.
Main idea : use informations on the interface (almost upwind scheme)



Reducing interface displacement (high order)
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A

Standard WENO-5 stencil for D−x φi : (xi−3, xi−2, · · · , xi+2)

Use point A in the stencil : (xi−2, xi−1, xA, xi, xi+1, xi+2).
ENO scheme of high-order (Russo & Smereka, Gibou et al, Sussman &
Fatemi).

• Away from the interface, use WENO scheme,
• close to the interface, use subcell fix with ENO scheme.
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Reducing interface displacement (high order)
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Reducing interface displacement (high order)
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Global accuracy

WENO scheme



Global accuracy

Subcell fix of order 3



Accuracy near the interface

WENO scheme



Accuracy near the interface

Subcell fix of order 3



Coupling with transport

Ω = (0, 1)2

φ|t=0 =
√

((x− 0.5)2 + (y − 0.75)2)− 0.15

u = cos

(
πt

T

)
∇⊥ω

ω = sin(πx)2 sin(πy)2



Coupling with transport (naive approach)

• evaluate spatial error in the scheme,
• previous example with T = 0.046875, results for t = T ,
• ∆t = ∆x2.

every time step only 5 reinitializations
∆x err. coc err. coc
1/16 1.59e-02 - 2.76e-02 -
1/32 5.07e-03 1.65 5.05e-03 2.45
1/64 1.46e-04 5.12 8.48e-05 5.90
1/128 3.22e-05 2.18 2.50e-06 5.09
1/256 1.64e-04 -2.35 1.83e-07 3.77

Table: L∞ error near the computed interface

 avoid reinitialization at every time step



How to control the number of reinitializations?

• Introduce rg := ‖|∇φ| − 1‖,
• rg = 0 for φ a distance function,
• while rg < ε, use only transport for φ,
• once rg ≥ ε, replace φ by the distance function.

mesh L∞ error coc L∞ error coc
40 0.919E+00 - 0.108E+01 -
80 0.291E+00 1.66 0.363E+00 1.57
160 0.934E-01 1.64 0.921E-01 1.98
320 0.301E-01 1.64 0.343E-01 1.43
640 0.369E-02 3.03 0.422E-02 3.02

Table: Previous example with T=2, ε = 0.1. L∞-errors on the curvature of the
interface: at t = 2 (left) and t = 4 (right). For each computation : 16
reinitializations.



Numerical illustration

Figure: Previous example with T = 6 (600 time steps), ε = 0.15: without
reinitialization (left), naive approach (middle, 600 reinitializations) and new
strategy (right, 14 reinitializations).



Final strategy

Strategy based on the approximation of a continuous problem:
• initialization: start with φ the signed distance function,
• transport: as long as rg < ε, evolve φ according to

∂tφ+ u·∇φ = 0,

• reinitialization: if rg = ε, replace φ by the distance function; go to
transport.

Pros
• third order convergence for φ, first order convergence for κ,
• φ remains close to a distance function ⇒ lower amplitudes of the error on
κ.

Cons
• choice of ε,
• requires a full computation of the distance function. Relaxation might be
expansive ⇒ coupling relaxation method and fast-sweeping scheme away
from the interface.



Add-on: Fast-Sweeping step

Analogy with linear systems

Relaxation method ↔ relaxed Jacobi method,
(very accurate near the interface, but slow),

Fast-Sweeping method ↔ Gauss-Seidel method,
(very fast, but requires a good guess near the interface).

In practice

• Use relaxation method in a band of length 5∆x,
• iterate until convergence in the narrow band,
• then Fast-Sweeping away from the interface,
• second order FS, with fixed number of iterations.



Add-on: numerical illustration

Previous reinitialization example.

mesh ‖d− φh‖ coc ‖κ− κh‖ coc number of it.
40 6.14E-04 - 5.97E-02 - 23
80 5.28E-05 3.54 2.65E-02 1.17 28
160 5.60E-06 3.24 1.25E-02 1.08 32
320 6.47E-07 3.11 6.29E-03 1.00 36
640 8.44E-08 2.94 3.17E-03 0.99 41

Table: Errors and computed order of convergence (coc) for the mixed method.
L∞-error in the narrow band on φ (left), L∞-error on κ on the interface (middle)
and total number of iterations (right).

• (not shown here) second order accuracy for the global error on φ,
• with only relaxation, number of iterations ∼ 2/∆x.



Conclusion

• Development of sharp cartesian method for air-water interfaces with a
second order treatment of the pressure,

• High order level-set technique, allowing consistent computation of the
curvature of the interface, even for long times.

What’s next:

• Coupling of the two techniques,
• Implementation, validation in 3D,
• Application to fluid-solid interaction.
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