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Abstract : Aiming to the numerical simulation of the VKS2-like dynamos, a numerical code
(SFEMaNS) has been developed, using Lagrange Finite Elements. This choice of FE is a very
challenging task for the Maxwell equations. In particular, standard algorithms may fail to con-
verge to the right solution in the steady state case, if either the domain or the magnetic perme-
ability has singularities. To overcome this difficulty, a new approximation technique has been
introduced and validated on benchmark problems. Results have also been successfully compared
to other numerical simulations.

1. Introduction

The aim of this work is the development of a numerical code capable of integrating the magneto-
hydrodynamics (MHD) equations in heterogeneous media. The computational domain is assumed
to be axisymmetrical. It is made of two parts: a conducting region, and an insulating region, of-
ten referred to as the vacuum. The magnetic field is then represented by a pair H − φ where H
denotes the magnetic field in the conducting region, and φ is the scalar potential in the vacuum.
The bedrock of the approximation technique is presented in [3] (electromagnetic approximation)
and [4] (coupling with Navier-Stokes equations). Lagrange finite elements are used in meridian
planes, and variations in the azimuthal direction are approximated with Fourier expansions. A
non standard technique has been designed in order to deal with discontinuous magnetic perme-
ability. Hereafter we only focus on kinematic dynamo (i.e. with prescribed velocity field) since
the coupling with Navier-Stokes equations remains unchanged.

First, we precise the notations and the new formulation we want to use. The new method is
then numerically tested on various academic benchmark problems. Finally, it is used to study
kinematic dynamo with Von Kármán flow.

2. Setting of the magnetic problem

We want to solve the MHD equations in a bounded axisymmetric domain Ω ⊂ R3. We assume
that the boundary Γ := ∂Ω is Lipschitz continuous. Ω is made of a conducting region Ωc and an
insulating region Ωv. We assume thatΩv is simply connected, and we denote by Σ the interface
between Ωc and Ωv. We also assume that Ωc is partitioned into subregions Ωc1, · · · ,ΩcN so that
the restriction of µ (magnetic permeability) over each subregion is constant. We denote by Σµ

the interface between all the conducting subregions. To easily refer to boundary condition, we
introduce Γv := Γ ∩ ∂Ωv and Γc := Γ ∩ ∂Ωc. The notation is illustrated in Figure 1.

We directly write the non-dimensionalized equations (the reference scale for the magnetic
field has been chosen so that the reference Alfvén speed is one). Let us introduce E the electric
field in the conducting region (we can get rid of it with a weak formulation, cf. [3]), u the
(prescribed) velocity field, js a given current, µ (resp. σ) is the magnetic permeability (resp.
electric conductivity). We assume that both µ and σ are constant on each Ωci. n denotes the
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Figure 1: Left: example of computational domain. Right: VKS design with real dimensions
(upper part) and computational dimensions (lower part)

outward normal and α is a real parameter in the range [1/2; 1]. We want to solve the following

µ∂tH = −∇×E− µ∇pc in Ωc

(−∆0)αpc = −∇·(µH) in Ωc

pc = 0 on ∂Ωc

∇×H = Rmσ (E + u×µH) + js in Ωc

∇·E = 0 in Ωc

µ∂t∆φ = −µ∆pv in Ωv

∆pv = ∆φ in Ωv

∇pv·n = 0 on ∂Ωv

(2.1)

For the sake of simplicity, one can assume that α = 1. The main novelty of this formulation is the
addition of the unknowns pc and pv, abusively referred to as magnetic pressure (since they play
the role of a Lagrange multiplier). We shall add to these equations a set of consistent initial data
and boundary conditions. Moreover, we have to deal with continuity conditions on the interfaces.

The presence of the magnetic pressure, motivated by [1], allows us to take into account the
divergence-free constraint on the magnetic induction, especially in the case of steady-state prob-
lem. While standard techniques may fail to converge to the right solution if the conducting domain
has singularities (such as re-entrant corner) or if the magnetic permeability is not smooth, this new
formulation leads to a convergent method.

With consistent initial data

∇·(µH)|t=0 = 0 in Ωc and ∆φ|t=0 = 0 in Ωv,

we require pc|t=0 = 0 and pv|t=0 = 0. We can show that pc ≡ 0 and pv ≡ 0.
As in [5], we can derive a weak formulation that only involves H, φ et pc. We still use a BDF2

(Backward Difference Formula) scheme for the time discretization. The approximation is the
following : given a time-step ∆t and a triangulation of the meridian plane of the computational
domain, we denote by h the typical mesh-size. After proper initialization of H, φ and pc, we
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introduce

H∗ = 2Hn −Hn−1

DHn+1 =
1

2

(
3Hn+1 − 4Hn + Hn−1

)
Dφn+1 =

1

2

(
3φn+1 − 4φn + φn−1

)
Denoting by Hn+1, φn+1 and pn+1 the approximations of H, φ and pc at time tn+1 = (n + 1)∆t,
we compute these quantities in one step by solving, for every b, ϕ, q discrete test-functions :∫

Ωc

µ
DHn+1

∆t
·b +

∫
Ωv

µ
∇Dφn+1

∆t
·∇ϕ+

∫
Ωc

(Rmσ)−1∇×Hn+1·∇×b

+

∫
Σµ

{
(Rmσ)−1∇×Hn+1

}
·[[b]]×n +

∫
Σ

(Rmσ)−1∇×Hn+1· (b−∇ϕ)×n

+ h−1

∫
Σµ

[[Hn+1]]×n·[[b]]×n + h−1

∫
Σ

(
Hn+1 −∇φn+1

)
×n· (b−∇ϕ)×n

+ h2α

∫
Ωc

∇·(µHn+1)∇·(µb) +

∫
Ωc

µ∇pn+1·b (2.2)

−
∫

Ωc

µHn+1·∇q + h2(1−α)

∫
Ωc

∇pn+1·∇q

+

∫
Ωv

µ∇φn+1·∇ϕ−
∫

Ωv

µ
(
n·∇φn+1

)
ϕ

=

∫
Ωc

(
(Rmσ)−1js + u×µH∗

)
·∇×b + boundary terms + interface terms

3. Validation

3.1. 2D L-shape domain In this section, we want to motivate the addition of pc. We consider
the Maxwell equations in a 2D L-shape domain. We consider the case Ω = Ωc1. We use µ = 1,
σ = 1 and js = 0. The method is shown to be convergent on several benchmark problems. The
first one is the boundary value problem

∇×∇×H = 0, ∇·H = 0, H×n = ∇ψ×n,

where ψ is the singular potential ψ(r, θ) = r sin

(
2θ

3

)
(using cylindrical coordinates). The

solution of the problem is then H = ∇ψ.
The second problem is the eigenvalue problem, i.e. find (λ,H) such that

∇×∇×H = λH, ∇·H = 0, H×n = 0.

Results are presented in Figure 2. Polynomials of degree 2 have been used to approximate the
magnetic field. The typical mesh-sizes are 1/10, 1/20, 1/40, 1/80 and 1/160. The slope for the
boundary value problem is almost 2/3. For the eigenvalue problem, the ARPACK library has
been used with tolerance 10−8, leading to the stalling of the computed order of convergence for
the third and the fourth eigenvalue. The approximation of the first eigenvalue is the most difficult,
since the corresponding eigenvector has a strong singularity.
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Figure 2: Test for singular domains: boundary value problem (left) and eigenvalue problem (right)

3.2. Induction in a composite sphere We test here the case where Ω = R3, Ωc is a sphere
(center 0, radiusR2). The sphere is divided into two parts, Ωc1 and Ωc2, where Ωc1 is also a sphere
(center 0, radius R1 < R2). We assume that the permeability in Ωc1 is µ0 (permeability in the
vacuum) and the permeability in Ωc2 is denoted by µ0µ (µ being a non-dimensionalized constant).
The magnetic field at infinity is the vertical uniform field H = H0ez. The magnetic field H is
then solution of

∇×H = 0, ∇·(µH) = 0, lim
‖x‖→+∞

H(x) = H0ez

This problem has an analytic stationary solution. Results of the computation are shown in Figure
3. One can in particular notice (fig 3(c)) that the magnetic lines in the vacuum region arrive nearly
perpendicularly at the boundary of Ωc. The computed orders of convergence for the L2 norm of
H and the H1 norm of φ are both greater than 2.5

(a) Hr (b) Hz (c) lignes de champ

Figure 3: Stationary solution for µ = 200.

4. Kinematic dynamo

The new formulation has been successfully compared to a finite volume/boundary element method
on kinematic dynamo problems with analytical axisymmetric velocity fields (cf. [2]). It has also
been used to simulate a kinematic dynamo with a velocity field given by the von Kármán Sodium
2 (VKS2) experiment (running in Cadarache, cf. [6]), despite the lack of axisymmetry (because
of the blades in the experiment). A simplified setting is shown on Figure 1. We consider two
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(a) µ = 1, Rm = 75 (steel) (b) µ = 60, Rm = 65 (soft iron)

Figure 4: Magnetic lines and iso-value of the magnetic energy density corresponding to 25% of
the maximum magnetic energy for different type of disks with same lid flow

counter-rotating disks (with blades) in a cylindrical container full of liquid sodium. This con-
tainer is surrounded by a layer of motionless sodium and is itself contained in a copper envelope.

We want to study the impact of the lid flow (i.e. the velocity field behind the disks) on the
critical magnetic Reynolds number. We use data from a water experiment (cf. [7]) to build
a velocity field between the disks. The disks are themselves modeled by a fluid region, with
assigned velocity. Four cases have been tested, in order to study two types of disks (either soft
iron or stainless steel) and two types of lid flow. With stainless steel disks, the type of lid flow
dramatically changes the critical magnetic Reynolds number (82 and 75). In the case of soft
iron, both lid flows give almost the same result (66 and 64). We can also observe a difference in
the magnetic lines near the disks (cf. Figure 4). This result allows us to think that the motion
of solid ferromagnetic material plays an important role in the dynamo highlighted by the VKS2
experiment. Moreover, ferromagnetic disks seem to screen the effect of the lid flow.

5. Conclusion

A new approximation technique has been designed to solve Maxwell equations with Lagrange
finite elements, allowing singularities in the domains and in the permeability. This technique has
been numerically validated on benchmark problems and applied to a kinematic dynamo setting
(inspired from VKS2 experiment). The next step is the use of this technique in a fully non-linear
MHD problem (still with a VKS2 setting). Another application will be the modelisation of the
effect of the blades by a forcing term.
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[3] Guermond, J.-L., Laguerre, R., Léorat, J., Nore, C. (2007) An interior penalty Galerkin method for the MHD
equations in heterogeneous domains, J. Comput. Phys. 221(1) 349-369
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