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Motivations
An efficient way of representing and tracking the evolution of a interface is the level set method introduced by Osher and Sethian [1]. It consists of representing the
interface as the zero level set of a higher dimensional function. This approach eases the treatment of topological changes and gives straightforward formula to compute
geometric properties of the interface. Based on the work of Cisternino and Weynans [2] on elliptic problems with discontinuities across an interface, we want to design
a sharp cartesian method for the Navier-Stokes equations. It requires accurate tracking of an interface and accurate computation of its geometric properties, even for
long times computations. We develop a method in a finite differences framework on cartesian grids. The method involves reinitialization steps, i.e. computations of the
signed distance function, which are shown to be necessary. However, their number has to be limited. We first design a fast but accurate method for the reinitialization
step, and use it only when distortion of the iso contours is too important. The method compares well with usual level set strategies [3].

Context of the study

Level set φ, interface Γ = {φ = 0}, curvature κ, typical
mesh size h, total number of dof N .

Passively advected interface, i.e.

∂tφ + U·∇φ = 0.

U is the fluid velocity, divergence-free, available in the
entire computational domain.
From time to time, reinitialization of the level set,
through the eikonal equation

|∇φ| = 1

φ = 0 on Γ

Objectives: at least first order accuracy on κ.
Issues: how to solve accurately and quickly the eikonal
equation? When is the reinitialization step necessary?

Reinitialization algorithms

• Relaxation algorithms with subcell fix [4, 5]
Resolution of the unsteady eikonal equation (with fic-
titious time step τ )

∂τφ + sgn(φ0) (|∇φ| − 1) = 0,

with φ(τ = 0) := φ0. When steady state is reached,
φ is the signed distance to Γ = {φ0 = 0}.
RK3-TVD in pseudo-time, WENO-5 scheme with sub-
cell fix in space
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standard WENO-5 stencil for D−x φi is (xi−3, xi−2, · · · , xi+2).
Subcell fix stencil is (xi−2, xi−1, xA, xi , xi+1, xi+2): use of an
ENO-3 scheme ⇒ avoids important displacement of Γ.

 third order accuracy on φ, first order accuracy
on κ, but computational cost O(N2).

• Second order fast sweeping algorithm [3]
Idea: Gauss-Seidel like iterations to solve the eikonal
equation. First order [6] or second order [3] methods
might be designed with computational cost O(N).
Main issue: needs an accurate initialization near the
interface.
• Hybrid method Use relaxation method in a narrow
band Bn of Γ, until third order accuracy is achieved.
Use fast sweeping elsewhere. Typically,

Bn = {d(x , Γ) < 5h} .

IGlobal second order accuracy on φ,
IThird order accuracy near Γ,
IFirst order accuracy on κ,
I computational cost O(N1+α), with α < 0.5.

Coupling strategy for evolving interfaces

I Introduce rg := ‖|∇φ| − 1‖ and a threshold δ,
I initialization: start with φ the signed distance function,
I transport: as long as rg < δ, evolve φ according to

∂tφ + U·∇φ = 0,

I reinitialization: if rg ≥ δ, replace φ by the distance function; go to transport.

Pros:
• third order convergence for φ, first order convergence for κ,
• φ remains close to a distance function ⇒ lower amplitudes of the error on κ,
• the method is insensitive to ∆t (for δ > 0).
Cons:
• choice of δ (δ = 0 corresponds to usual strategies),
• full computation of the signed distance function.

Numerical illustration

Vortex test case: a circle is distorted and restored at its initial position. Iso contours of φ at the
end of the simulation (t = 4). Left: with δ = 0, which corresponds to usual strategy; middle:
with δ = 0.1; right: distortion of φ at times t = 0, 2/3, 4/3, 2.

The number of reinitialization steps has to be limited.

Numerical validation
Creation of large and/or small gradients

eκ = 3.10−3 eκ = 5.10−3

eκ = 0.94 eκ = 3.53

Example of a flow around a cylinder. Γ is globally invariant.
(top) without reinitialization, with t = 0, 3, 6. (bottom) with
δ = 0.1 at the same times. Error on κ is given.

Interface evolving with curvature dependent
speed: ∂tφ = (κ− κ̄)|∇φ|

t = 0 t = 0.1 t = 0.68

t = 0 t = 0.1 t = 1.3

(top) without reinitialization. (bottom) with δ = 0.1. κ̄ is the
mean value of κ on Γ

Influence of the parameter δ

δ = 0 usual level strategy

δ >> 1 no reinitialization

Vortex test case (left) and flow around cylinder (right): error
on the position of Γ depending on δ. The squares represent the
total number of reinitialization steps required (logarithmic
scale).
⇒ Reinitialization is necessary but the number of
reinitializations has to be controlled.

Conclusions and prospects
I Reinitialization steps are often necessary, but their number has to be limited,

IWe have designed a reinitialization algorithm with a good balance between accuracy (high order near the
interface) and computational cost (fast sweeping step)

IThe strategy may be extended for 3D cases, and parallelization is achievable

IThe method may be used for passively advected interfaces, interfaces moving with curvature dependent
speed, two phase flows with important effect of the surface tension...

I A sharp cartesian method for NS equation might be achieved, with application for air-water interfaces
and fluid/solid interactions (wave breaking, marine engineering, wave energy converters...)

I It can serve as a basis to automatically build overset meshes in the vicinity of the interface (e.g. in
fluid/solid interactions to capture boundary layers)
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