Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Analyse théorique et numérique des équations de la magnétohydrodynamique : application à l'effet dynamo.

Francky Luddens

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Sud.

Groupe de travail Méthodes Numériques, Laboratoire Jacques-Louis Lions, 03/12/2012

Le code SFEMaNS 000000 Application à l'effet dynamo

Conclusions et perspectives

Plan de la présentation

Le problème MHD

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Le code SFEMaNS 000000 Application à l'effet dynamo

Conclusions et perspectives

Plan de la présentation

Le problème MHD

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Le problème MHD		

Effet dynamo

Effet dynamo : "génération et entretien d'un champ magnétique par le mouvement d'un fluide conducteur de l'électricité".

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} - R_e^{-1} \Delta \mathbf{u} + \nabla p = (\nabla \times \mathbf{H}) \times \mu \mathbf{H} + \mathbf{f}$$

► Fluide conducteur de l'électricité ~> équations de Maxwell :

$$\mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}$$
$$\nabla \times \mathbf{H} = R_m \sigma \left(\mathbf{E} + \mathbf{u} \times \mu \mathbf{H} \right) + \mathbf{j}^s$$

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Motivations : géodynamo et expérience Von Kármán Sodium

Le problème MHD		
0000		

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Sur Ω_c

$$\mu \partial_t \mathbf{H} + \nabla \times \left(\frac{1}{R_{\rm m}\sigma}\right) \nabla \times \mathbf{H} = \nabla \times \left(\frac{1}{R_{\rm m}\sigma} \mathbf{j}^s + \mathbf{u} \times \mu \mathbf{H}\right),$$
$$\nabla \cdot (\mu \mathbf{H}) = \mathbf{0}.$$

Sur
$$\Omega_{\mathbf{v}}$$
, $\nabla \times \mathbf{H} = 0 \Rightarrow \mathbf{H} = \nabla \phi$,

$$\mu \partial_t \nabla \phi = -\nabla \times \mathbf{E},$$
$$\Delta \phi = \mathbf{0}.$$

Sur Σ_{μ} ,

 $\llbracket \mathbf{H} \times \mathbf{n} \rrbracket = \mathbf{0},$ $\llbracket \mu \mathbf{H} \cdot \mathbf{n} \rrbracket = \mathbf{0}.$

Sur Σ ,

$$\label{eq:holdsystem} \begin{split} \llbracket \boldsymbol{H} \boldsymbol{\times} \boldsymbol{n} \rrbracket &= \boldsymbol{0}, \\ \llbracket \boldsymbol{E} \boldsymbol{\times} \boldsymbol{n} \rrbracket &= \boldsymbol{0}. \end{split}$$

Le problème MHD		

Objectifs

Développer un outil numérique (ou plutôt améliorer un outil numérique) pour résoudre les équations de la MHD, capable de :

- gérer correctement les cas stationnaires,
- > gérer correctement les géométries singulières,
- gérer correctement les cas avec sauts de µ,
- calculer correctement le taux de (dé)croissance du champ magnétique, sans mode parasite,
- utiliser des éléments de Lagrange,
- fonctionner en parallèle,
- utiliser le moins d'informations possibles sur Ω.

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Plan de la présentation

Le problème MHD

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Méthode d'approximation		
•00000000000000		

Exemple de géométrie singulière

$$\begin{split} \mathbf{j}^{s} &= \mathbf{0}, \ \mathbf{\textit{R}}_{m} = \mathbf{1}, \ \mathbf{u} = \mathbf{0}, \ \Omega = \Omega_{c} \\ \mathbf{H}(\mathbf{x}, t) &= \mathbf{H}_{0}(\mathbf{x}) \mathrm{e}^{-\lambda t} \\ + \text{ conditions de bord homogènes} \end{split}$$

$$\nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H}_{0}\right) = \lambda \mu \mathbf{H}_{0}$$
$$\nabla \cdot (\mu \mathbf{H}_{0}) = \mathbf{0}$$
$$\mathbf{H}_{0} \times \mathbf{n} = \mathbf{0}$$

Méthode d'approximation		
000000000000000000		

Problème aux limites

Pour $\mathbf{F} \in \mathbf{H}_{div=0}(\Omega, \mu)$, on considère le problème

 $\left\{ \begin{array}{l} \text{trouver } \mathbf{H} \in \mathbf{X} \text{ tel que} \\ \nabla \times \left(\sigma^{-1} \nabla \times \mathbf{H} \right) = \mu \mathbf{F} \end{array} \right.$

avec :

$$\begin{array}{lll} \label{eq:Hdiv} \textbf{H}_{\text{div}=0}(\Omega,\mu) & := & \left\{ \textbf{F} \in \textbf{L}^2(\Omega) \mid \nabla {\cdot} (\mu \textbf{F}) = \textbf{0} \right\} \\ \\ \textbf{H}_{0,\text{curl}}(\Omega) & := & \left\{ \textbf{F} \in \textbf{L}^2(\Omega) \mid \nabla {\times} \textbf{F} \in \textbf{L}^2(\Omega) \text{ et } \textbf{F} \times \textbf{n}_{\mid \partial \Omega} = \textbf{0} \right\} \\ \\ \textbf{X} & := & \textbf{H}_{0,\text{curl}}(\Omega) \cap \textbf{H}_{\text{div}=0}(\Omega,\mu) \end{array}$$

Application à l'effet dynamo

Conclusions et perspectives

Formulation variationnelle

Définition d'un opérateur

trouver
$$\mathbf{H} \in \mathbf{X}$$
 tel que $\forall \mathbf{b} \in \mathbf{X}$
 $(\sigma^{-1} \nabla \times \mathbf{H}, \nabla \times \mathbf{b}) = (\mu \mathbf{F}, \mathbf{b})$

On définit AF := H.

Méthode d'approximation		
0000000000000		

Formulation variationnelle

Définition d'un opérateur

trouver
$$\mathbf{H} \in \mathbf{X}$$
 tel que $\forall \mathbf{b} \in \mathbf{X}$
 $(\sigma^{-1} \nabla \times \mathbf{H}, \nabla \times \mathbf{b}) = (\mu \mathbf{F}, \mathbf{b})$

On définit AF := H.

- ► la forme bilinéaire est coercive sur X ~~ A est bien définie.
- $A: L^2(\Omega) \to L^2(\Omega)$ est un opérateur compact auto-adjoint.
- l'équation sur la divergence EST une contrainte.
- on a un problème aux valeurs propres sur A.
- on cherche à construire une famille d'opérateurs discrets $A_h : L^2(\Omega) \to L^2(\Omega)$.
- la contrainte de divergence nulle est difficilement respectée par les éléments finis de Lagrange.

Application à l'effet dynamo

Conclusions et perspectives

Construction d'une famille d'opérateurs discrets

Convergence Spectrale (Osborn 1975)

On suppose que

- (convergence ponctuelle) Pour tout $\mathbf{F} \in \mathbf{L}^2$, $\lim_{h\to 0} ||(A_h A)\mathbf{F}||_{\mathbf{L}^2} = 0$;
- ▶ (compacité collective) Pour tout U borné de L², {A_hF; F ∈ U, 0 < h < 1} est relativement compact dans L².

Alors A_h est une approximation spectralement correcte de A.

Application à l'effet dynamo

Conclusions et perspectives

Construction d'une famille d'opérateurs discrets

Convergence Spectrale (Osborn 1975)

On suppose que

- (convergence ponctuelle) Pour tout $\mathbf{F} \in \mathbf{L}^2$, $\lim_{h\to 0} ||(A_h A)\mathbf{F}||_{\mathbf{L}^2} = 0$;
- (compacité collective) Pour tout U borné de L², {A_hF; F ∈ U, 0 < h < 1} est relativement compact dans L².

Alors A_h est une approximation spectralement correcte de A.

- En particulier, si A_h converge vers A dans la norme d'opérateurs, on a une approximation spectralement correcte.
- A : L² → L² est compact (Bonito et Guermond '09, Bonito, Guermond et L. '12)
- Pour $\mu \equiv 1$, $\sigma \equiv 1$ et $\mathbf{F} \in \mathbf{L}^2$, on a $A\mathbf{F} \in \mathbf{H}^{1/2}$ et $\nabla \times A\mathbf{F} \in \mathbf{H}^{1/2}$.

Méthode d'approximation		
000000000000000000000000000000000000000		

Cas σ et μ constants

$$\mathsf{H}_{ ext{div}}(\Omega,\mu) := \left\{ \mathsf{F} \in \mathsf{L}^2(\Omega) \mid
abla \cdot (\mu \mathsf{F}) \in L^2(\Omega)
ight\}.$$

Nouvelle formulation

Pour $\mathbf{F} \in \mathbf{L}^{2}(\Omega)$, trouver $\mathbf{H} \in \mathbf{H}_{0,\mathrm{curl}}(\Omega) \cap \mathbf{H}_{\mathrm{div}}(\Omega,\mu)$ tel que, $\forall \mathbf{b} \in \mathbf{H}_{0,\mathrm{curl}}(\Omega) \cap \mathbf{H}_{\mathrm{div}}(\Omega,\mu)$,

$$\left(\sigma^{-1} \nabla \times \mathbf{H}, \nabla \times \mathbf{b}\right) + \left(\nabla \cdot (\mu \mathbf{H}), \nabla \cdot (\mu \mathbf{b})\right) = (\mu \mathbf{F}, \mathbf{b}).$$

Domaines singuliers (Costabel et al., '90)

Si Ω n'est pas convexe et sa frontière n'est pas régulière, l'espace $H_{0,curl}(\Omega) \cap H^1$ est un sous-espace strict et fermé dans $H_{0,curl}(\Omega) \cap H_{div}(\Omega, 1)$.

Réhabilitation des éléments nodaux

- Bramble, Kolev et Pasciak : contrôler la divergence dans un espace intermédiaire entre L² et H⁻¹ → méthode de moindres carrés
- Dauge et Costabel : contrôler la divergence dans un espace de Sobolev à poids
- ► ajouter $(w_{\gamma} \nabla A \mathbf{F}, w_{\gamma} \nabla \mathbf{b})$ à la forme bilinéaire (Buffa, Ciarlet et Jamelot, '10)
- $w_{\gamma} \sim d^{\gamma}$, avec *d* la distance aux singularités.
- > γ dépend de la régularité du domaine.
- Cette méthode demande des informations a priori sur le domaine.

Méthode d'approximation		
000000000000000000000000000000000000000		

Nouvelle approche : Trouver $A_h \mathbf{E} \in \mathbf{X}_h$, tq $\forall \mathbf{b}_h \in \mathbf{X}_h$,

$$\left(\sigma^{-1} \nabla \times A_h \mathbf{F}, \nabla \times \mathbf{b}_h\right) + \langle \nabla \cdot (\mu A_h \mathbf{F}), \nabla \cdot (\mu \mathbf{b}_h) \rangle_{-\alpha} = (\mu \mathbf{F}, \mathbf{b}_h),$$

Méthode d'approximation		
000000000000000000000000000000000000000		

Nouvelle approche : Trouver $A_h \mathbf{E} \in \mathbf{X}_h$, tq $\forall \mathbf{b}_h \in \mathbf{X}_h$,

$$\left(\sigma^{-1} \nabla \times \boldsymbol{A}_{h} \mathbf{F}, \nabla \times \mathbf{b}_{h}\right) + h^{2(\alpha-1)} \langle \nabla \cdot (\mu \boldsymbol{A}_{h} \mathbf{F}), \nabla \cdot (\mu \mathbf{b}_{h})
angle_{-1} = (\mu \mathbf{F}, \mathbf{b}_{h}),$$

 $\mathbf{H}^{-\alpha}$ / \mathbf{H}^{-1} , estimation inverse

$$\|
abla \cdot (\mu \mathbf{b}_h)\|^2_{\mathbf{H}^{-lpha}} \lesssim h^{2(lpha-1)} \|
abla \cdot (\mu \mathbf{b}_h)\|^2_{\mathbf{H}^{-1}}.$$

Méthode d'approximation		
000000000000000000000000000000000000000		

Nouvelle approche : Trouver $A_h \mathbf{E} \in \mathbf{X}_h$, $p_h \in M_h$, tq $\forall (\mathbf{b}_h, q_h) \in \mathbf{X}_h \times M_h$,

$$\begin{pmatrix} \sigma^{-1} \nabla \times A_h \mathbf{F}, \nabla \times \mathbf{b}_h \end{pmatrix} + (\nabla p_h, \mu \mathbf{b}_h) = (\mu \mathbf{F}, \mathbf{b}_h), \\ (\mu A_h \mathbf{F}, \nabla q_h) - h^{2(1-\alpha)} (\mu \nabla p_h, \nabla q_h) = 0.$$

 $\mathbf{H}^{-\alpha}$ / \mathbf{H}^{-1} , estimation inverse

$$\|
abla \cdot (\mu \mathbf{b}_h)\|_{\mathbf{H}^{-lpha}}^2 \lesssim h^{2(lpha-1)} \|
abla \cdot (\mu \mathbf{b}_h)\|_{\mathbf{H}^{-1}}^2.$$

 \mathbf{H}^{-1} / formulation mixte

$$h^{2(\alpha-1)}\langle \nabla \cdot (\mu \boldsymbol{A}_{h}\boldsymbol{\mathsf{F}}), \nabla \cdot (\mu \boldsymbol{b}_{h}) \rangle_{\boldsymbol{\mathsf{H}}^{-1}} = -(\nabla \cdot (\mu \boldsymbol{b}_{h}), \underbrace{h^{2(\alpha-1)}(-\Delta_{\mu})^{-1}(-\nabla \cdot (\mu \boldsymbol{A}_{h}\boldsymbol{\mathsf{F}}))}_{:=\rho_{h}})$$

Méthode d'approximation		
000000000000000000		

Nouvelle approche : Trouver $A_h \mathbf{E} \in \mathbf{X}_h$, $p_h \in M_h$, tq $\forall (\mathbf{b}_h, q_h) \in \mathbf{X}_h \times M_h$,

$$egin{aligned} &\left(\sigma^{-1}
abla imes oldsymbol{A}_h oldsymbol{F},
abla imes oldsymbol{b}_h
ight) + oldsymbol{h}^{2lpha} \left(
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F},
abla oldsymbol{q}_h) + oldsymbol{h}^{2lpha} \left(
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F},
abla oldsymbol{q}_h) + oldsymbol{h}^{2lpha} \left(
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F},
abla oldsymbol{q}_h) + oldsymbol{h}^{2lpha} \left(
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F},
abla oldsymbol{q}_h) + oldsymbol{h}^{2lpha} \left(
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F},
abla oldsymbol{q}_h) - oldsymbol{h}^{2(1-lpha)} \left(\mu
abla oldsymbol{p}_h,
abla oldsymbol{q}_h
ight) = 0. \end{aligned}$$

 $\mathbf{H}^{-\alpha}$ / \mathbf{H}^{-1} , estimation inverse

$$\|
abla \cdot (\mu \mathbf{b}_h)\|^2_{\mathbf{H}^{-lpha}} \lesssim h^{2(lpha-1)} \|
abla \cdot (\mu \mathbf{b}_h)\|^2_{\mathbf{H}^{-1}}.$$

 $\mathbf{H}^{-1} / \text{formulation mixte}$ $h^{2(\alpha-1)} \langle \nabla \cdot (\mu \mathbf{A}_h \mathbf{F}), \nabla \cdot (\mu \mathbf{b}_h) \rangle_{\mathbf{H}^{-1}} = -(\nabla \cdot (\mu \mathbf{b}_h), \underbrace{h^{2(\alpha-1)}(-\Delta_{\mu})^{-1}(-\nabla \cdot (\mu \mathbf{A}_h \mathbf{F}))}_{:=p_h})$

schéma stable : $h^{2\alpha} \| \nabla (\mu \mathbf{b}_h) \|_{\mathbf{L}^2}^2$.

Méthode d'approximation		
000000000000000000000000000000000000000		

Nouvelle approche : Trouver $A_h \mathbf{E} \in \mathbf{X}_h$, $p_h \in M_h$, tq $\forall (\mathbf{b}_h, q_h) \in \mathbf{X}_h \times M_h$,

$$egin{aligned} &\left(\sigma^{-1}
abla imes oldsymbol{A}_h oldsymbol{F},
abla imes oldsymbol{b}_h
ight) + \left(
abla p_h, \mu oldsymbol{b}_h
ight) + h^{2lpha} \left(
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F}),
abla \cdot (\mu oldsymbol{A}_h oldsymbol{F},
abla oldsymbol{q}_h) - h^{2(1-lpha)} \left(\mu
abla p_h,
abla oldsymbol{q}_h
ight) = 0. \end{aligned}$$

 $\mathbf{H}^{-\alpha}$ / \mathbf{H}^{-1} , estimation inverse

$$\|
abla \cdot (\mu \mathbf{b}_h)\|^2_{\mathbf{H}^{-lpha}} \lesssim h^{2(lpha-1)} \|
abla \cdot (\mu \mathbf{b}_h)\|^2_{\mathbf{H}^{-1}}.$$

 $\mathbf{H}^{-1} / \text{formulation mixte}$ $h^{2(\alpha-1)} \langle \nabla \cdot (\mu \mathbf{A}_h \mathbf{F}), \nabla \cdot (\mu \mathbf{b}_h) \rangle_{\mathbf{H}^{-1}} = -(\nabla \cdot (\mu \mathbf{b}_h), \underbrace{h^{2(\alpha-1)}(-\Delta_{\mu})^{-1}(-\nabla \cdot (\mu \mathbf{A}_h \mathbf{F}))}_{:=p_h})$

schéma stable : $h^{2\alpha} \| \nabla (\mu \mathbf{b}_h) \|_{\mathbf{L}^2}^2$.

Contrôle de $\nabla (\mu \mathbf{b}_h)$ dans $H^{-\alpha}$ (Bonito et Guermond, '09)

$$\|\nabla (\mu \mathbf{b}_h)\|_{H^{-\alpha}} \leq \sup_{q_h \in \mathbb{M}_h} \frac{(\nabla (\mu \mathbf{b}_h), q_h)}{h^{1-\alpha} \|\nabla q_h\|_{\mathbf{L}^2}} + h^{\alpha} \|\nabla (\mu \mathbf{b}_h)\|_{\mathbf{L}^2}.$$

Application à l'effet dynamo

Conclusions et perspectives

Cas $\sigma \equiv 1, \mu \equiv 1$

L'approximation est spectralement correcte. Le point-clef est la régularité de *A***F**.

Application à l'effet dynamo

Conclusions et perspectives

Cas $\sigma \equiv 1$, $\mu \equiv 1$

L'approximation est spectralement correcte. Le point-clef est la régularité de *A***F**.

Régularité de la solution (Bonito, Guermond et L., '12)

Pour σ et μ réguliers par morceaux, il existe $s_1 > 0$ et $s_2 > 0$ tels que, $\forall F \in L^2$,

 $A\mathbf{F} \in \mathbf{H}^{s_1}(\Omega)$ et $\nabla \times A\mathbf{F} \in \mathbf{H}^{s_2}(\Omega)$

avec l'estimation

 $\|A\mathbf{F}\|_{\mathbf{H}^{\mathbf{s}_{1}}(\Omega)} + \|\nabla \times A\mathbf{F}\|_{\mathbf{H}^{\mathbf{s}_{2}}(\Omega)} \leq C \|\mathbf{F}\|_{\mathbf{L}^{2}(\Omega)}.$

Application à l'effet dynamo

Conclusions et perspectives

Cas $\sigma \equiv 1$, $\mu \equiv 1$

L'approximation est spectralement correcte. Le point-clef est la régularité de *A***F**.

Régularité de la solution (Bonito, Guermond et L., '12)

Pour σ et μ réguliers par morceaux, il existe $s_1 > 0$ et $s_2 > 0$ tels que, $\forall F \in L^2$,

 $A\mathbf{F} \in \mathbf{H}^{s_1}(\Omega)$ et $\nabla \times A\mathbf{F} \in \mathbf{H}^{s_2}(\Omega)$

avec l'estimation

$$\|A\mathbf{F}\|_{\mathbf{H}^{s_1}(\Omega)} + \|\nabla \times A\mathbf{F}\|_{\mathbf{H}^{s_2}(\Omega)} \leq C \|\mathbf{F}\|_{\mathbf{L}^2(\Omega)}.$$

 s₁ et s₂ dépendent de σ et μ, et tendent vers 0 lorsque les sauts tendent vers 0.

Application à l'effet dynamo

Conclusions et perspectives

Cas $\sigma \equiv 1$, $\mu \equiv 1$

L'approximation est spectralement correcte. Le point-clef est la régularité de *A***F**.

Régularité de la solution (Bonito, Guermond et L., '12)

Pour σ et μ réguliers par morceaux, il existe $s_1 > 0$ et $s_2 > 0$ tels que, $\forall F \in L^2$,

 $A\mathbf{F} \in \mathbf{H}^{s_1}(\Omega)$ et $\nabla \times A\mathbf{F} \in \mathbf{H}^{s_2}(\Omega)$

avec l'estimation

$$\|A\mathbf{F}\|_{\mathbf{H}^{s_1}(\Omega)} + \|\nabla \times A\mathbf{F}\|_{\mathbf{H}^{s_2}(\Omega)} \leq C \|\mathbf{F}\|_{\mathbf{L}^2(\Omega)}.$$

- ► s_1 et s_2 dépendent de σ et μ , et tendent vers 0 lorsque les sauts tendent vers 0.
- > Dans le cas σ et μ constants par morceaux (très utilisé en pratique), on a

$$s_1 > C \log \left(rac{\mu_{ extsf{max}}}{\mu_{ extsf{max}} - \mu_{ extsf{min}}}
ight).$$

Application à l'effet dynamo

Conclusions et perspectives

Point-clef pour la régularité

Décomposition de Helmholtz

Si $\mathbf{F} \in \mathbf{H}_{0,curl}(\Omega)$, on peut écrire $\mathbf{F} = \mathbf{F}_0 + \nabla p$ avec

 $\boldsymbol{\mathsf{F}}_0 \in \boldsymbol{\mathsf{H}}_{0,\mathrm{curl}}(\Omega) \cap \boldsymbol{\mathsf{H}}_{\mathrm{div}=0}(\Omega,1)$

 $p \in H_0^1(\Omega)$

Application à l'effet dynamo

Conclusions et perspectives

Point-clef pour la régularité

Décomposition de Helmholtz

Si $\mathbf{F} \in \mathbf{H}_{0,\text{curl}}(\Omega)$, on peut écrire $\mathbf{F} = \mathbf{F}_0 + \nabla p$ avec

$$\mathsf{F}_{0} \in \mathsf{H}_{0,\mathrm{curl}}(\Omega) \cap \mathsf{H}_{\mathrm{div}=0}(\Omega,1)$$

 $p \in H_0^1(\Omega)$

- ► $\mathbf{F}_0 \in \mathbf{H}^{\frac{1}{2}}(\Omega)$ (Costabel '91),
- $\nabla(\mu \nabla p) \in H^{s-1}$ pour $s < \frac{1}{2}$.

Application à l'effet dynamo

Conclusions et perspectives

Point-clef pour la régularité

Décomposition de Helmholtz

Si $\mathbf{F} \in \mathbf{H}_{0,\text{curl}}(\Omega)$, on peut écrire $\mathbf{F} = \mathbf{F}_0 + \nabla p$ avec

- $\mathbf{F}_0 \in \mathbf{H}^{\frac{1}{2}}(\Omega)$ (Costabel '91),
- $\nabla(\mu \nabla p) \in H^{s-1}$ pour $s < \frac{1}{2}$.

Problème elliptique avec coefficients discontinus

Pour *s* assez petit,
$$\ell \in H^{s-1}$$
 et $p \in H_0^1(\Omega)$ la solution de $\nabla (\mu \nabla p) = \ell$, on a
 $p \in H^{1+s}(\Omega)$.

Méthode d'approximation		
000000000000000		

Convergence

Pour $s < \min(s_1, s_2)$, la méthode est convergente dès que

$$\alpha \in \left(\frac{k(1-s)}{k-s},1\right).$$

Plus précisément, pour $\alpha = \frac{k(2-s)}{2k-s}$, il existe C > 0 telle que :

$$\forall \mathbf{F} \in \mathbf{L}^2(\Omega), \qquad \|A\mathbf{F} - A_h\mathbf{F}\|_{\mathbf{L}^2(\Omega)} \leq Ch' \|\mathbf{F}\|_{\mathbf{L}^2(\Omega)},$$

avec $r = s \frac{k-1}{k-\frac{s}{2}}$.

- Convergence en norme d'opérateur.
- La méthode est spectralement correcte.
- On peut montrer un ordre de convergence meilleur si AF est suffisamment régulier.

Outil pour montrer la convergence

- C_h opérateur d'interpolation (ou de projection) sur l'espace discret.
- ▶ PB : C_h et $\nabla \times$ ne commutent pas.

Opérateur de régularisation

On peut construire une famille d'opérateurs $\mathcal{K}_{\delta} : L^{2}(\Omega) \to L^{2}(\mathbb{R}^{d})$ telle que :

$$\mathcal{K}_{\delta}\mathbf{F} \in \mathcal{C}_{0}^{\infty}(\Omega)$$
$$\|\mathbf{F} - \mathcal{K}_{\delta}\mathbf{F}\|_{\mathbf{H}^{s}} \lesssim \delta^{r-s} \|\mathbf{F}\|_{\mathbf{H}^{r}}$$
$$\|\mathcal{K}_{\delta}\mathbf{F}\|_{\mathbf{H}^{r}} \lesssim \delta^{s-r} \|\mathbf{F}\|_{\mathbf{H}^{s}}$$
$$\nabla \times \mathcal{K}_{\delta}\mathbf{F} = (1-\delta)^{-1} \mathcal{K}_{\delta} (\nabla \times \mathbf{F})$$

Méthode d'approximation	
000000000000000	

Application à l'effet dynamo

Conclusions et perspectives

Problème aux limites

$$\lambda = 0.535, \ \mu_2 = 1$$
$$\mu_1 = \mu_3 = \tan\left(\frac{\lambda\pi}{4}\right) \tan\left(\frac{\lambda\pi}{2}\right)$$
$$\mathbf{H} = \nabla S_{\lambda}$$
$$S_{\lambda} = r^{\lambda}\phi_{\lambda}(\theta)$$

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Problème aux limites (II)

FIG.: composante x de la solution : $\alpha = 0$ (à gauche), solution réelle (au centre), $\alpha = 0,75$ (à droite)

Méthode d'approximation		

Benchmark

$\mu = 0.1$	$\mu = 1$
$\mu = 1$	$\mu = 0.1$

Le problème MHD Me	éthode d'approximation		
0000 0	000000000000		

Problème aux valeurs propres, $\alpha = 0.95$

	$\lambda_1 \simeq 4.534$		$\lambda_2\simeq 6.250$			
1/h	val.	rel. err.	COC	val.	rel. err.	COC
5	4.538	8.35810^{-4}	N/A	7.047	1.274 10 ⁻¹	N/A
10	4.534	9.592 10 ⁻⁵	3.12	7.038	1.261 10 ⁻¹	0.01
20	4.534	3.992 10 ⁻⁵	1.26	6.764	8.218 10 ⁻²	0.62
40	4.534	1.60610^{-5}	1.31	6.506	4.09610^{-2}	1.00
		$\lambda_3 \simeq 7.037$		$\lambda_4\simeq$ 22.342		
1/h	val.	rel. err.	COC	val.	rel. err.	COC
5	9.076	2.897 10 ⁻¹	N/A	22.51	7.48910^{-3}	N/A
10	7.404	5.220 10 ⁻²	2.47	22.36	9.48710^{-4}	3.05
20	7.037	2.274 10 ⁻⁵	11.1	22.34	9.935 10 ⁻⁵	3.26
40	7.037	2.597 10 ⁻⁶	3.13	22.34	9.71810^{-6}	3.35

Benchmarks fournis par M. Dauge (http:

//perso.univ-rennes1.fr/monique.dauge/core/index.html)

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Plan de la présentation

Le problème MHD

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Spectral / Finite Element for Maxwell and Navier Stokes :

- Développé depuis 2003 (J.-L. Guermond, C. Nore, J. Léorat, R. Laguerre, A. Ribeiro, F.L.),
- 3 modes de fonctionnement : NST, MXW et MHD,
- Utilise une géométrie axisymétrique,
- Décomposition de Fourier dans la direction azimutale,
- Éléments finis de Lagrange dans le plan méridien,
- Les conditions de continuité sont traitées par méthode de pénalisation,
- Parallélisation selon les modes de Fourier (MPI),
- Possibilité de conditions périodiques dans la direction axiale,
- Stabilisation de la divergence dans L^2 .

"pression magnétique" dans SFEMaNS

Sur Ω_c

$$\begin{split} \mu \partial_t \mathbf{H} + \nabla \times \left(\frac{1}{R_{\rm m}\sigma}\right) \nabla \times \mathbf{H} + \mu \nabla p^c - h^{2\alpha} \mu \nabla (\nabla \cdot (\mu \mathbf{H})) \\ &= \nabla \times \left(\frac{1}{R_{\rm m}\sigma} \mathbf{j}^s + \mathbf{u} \times \mu \mathbf{H}\right), \\ \nabla \cdot (\mu \mathbf{H}) - h^{2(1-\alpha)} \nabla \cdot (\mu \nabla p^c) = \mathbf{0}. \end{split}$$

Sur Ω_v ,

$$\mu \partial_t \Delta \phi - \Delta p^{\nu} = 0,$$

$$\Delta \phi + \Delta p^{\nu} = 0.$$

Conditions aux limites sur p^c , p^v : $p^c = 0 \text{ sur } \partial\Omega_c$ $\nabla p^v \cdot \mathbf{n} = 0 \text{ sur } \partial\Omega_v$

Parallélisation dans le plan méridien

FIG.: Exemple de découpage du plan méridien : à gauche, représentation des domaines Ω_{NS}^{2D} (bleu), Ω_{MXW}^{2D} (vert) et Ω_{V}^{2D} (marron), à droite, répartition des degrés de liberté sur 4 processeurs (une couleur par processeur)

	Le code SFEMaNS	
	000000	

Test de convergence : sphère de Durand

Aéthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Test de convergence : sphère de Durand

MHD avec Lagrange FE

Test de convergence : sphère de Durand

Application à l'effet dynamo

Conclusions et perspectives

Efficacité de la parallélisation (mxw)

Strong scalability

 T_N : temps moyen d'une itération pour un calcul sur *N* processeurs. À maillage fixé, on voudrait *N* T_N invariant.

FIG.: Comparaison de la parallélisation dans le plan méridien (cercles) et selon les modes de Fourier (carrés)

Weak scalability

On fixe le nombre de degrés de libertés par processeurs. Le temps moyen d'une itération doit rester constant.

N/N _{ref}	T_N/T_{ref}
2	0.90
4	0.80
8	0.62
16	0.52

TAB.: Test de parallélisation dans le plan méridien

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Efficacité de la parallélisation (nst)

Strong scalability

FIG.: Comparaison de la parallélisation dans le plan méridien (cercles) et selon les modes de Fourier (carrés)

N/N _{ref}	T_N/T_{ref}
2	0.95
4	0.84
8	0.87
16	0.74

TAB.: Test de parallélisation dans le plan méridien

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Plan de la présentation

Le problème MHD

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Méthode d'approximation

e code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Dynamo de type Busse & Wicht

 Ω_1 en rotation solide, Ω_2 au repos, R_m basé sur le temps diffusif.

Méthode d'approximation

e code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Dynamo de type Busse & Wicht

 Ω_1 en rotation solide, Ω_2 au repos, R_m basé sur le temps diffusif.

Théorème anti-dynamo

Si μ et σ sont axisymétriques, pas de dynamo.

Application à l'effet dynamo 000000

Cas σ variable, vérifications du code

FIG.: Taux de croissance en fonction de $R_{\rm m}^{1/3}$

$$\mu \equiv 1$$
 $\mu \equiv 1$

Application à l'effet dynamo

Conclusions et perspectives

Sauts de μ

 $\sigma \equiv 1$

FIG.: Taux de croissance en fonction de R_m

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Retour à VKS

Domaine de calcul

MHD avec Lagrange FE

Le code SFEMaNS 000000 Application à l'effet dynamo

Conclusions et perspectives

Retour à VKS

Domaine de calcul

Résultats expérimentaux

- Dynamo seulement pour des turbines en fer doux,
- Dynamo portée par le mode m = 0.

Simulations numériques

Calculs de dynamo cinématique avec champ de vitesses axisymétrique.

Théorème anti-dynamo (Cowling)

Un champ de vitesses axisymétrique ne peut pas engendrer un champ magnétique axisymétrique.

Application à l'effet dynamo

Importance des sauts de μ

Comparaisons de différentes conditions aux limites

- *R*_{mc} minimal pour des disques de forte perméabilité, et en présence de side-layer.
- ► La présence de matériau de forte perméabilité sur les bords du cylindre augmente significativement R_{mc} ~→ contre-productif pour la dynamo.

Effets du lid-flow

- Avec des pales en acier, le lid-flow influe fortement sur R_{mc}.
- Les pales en fer doux écrantent cet effet.

Application à l'effet dynamo

Conclusions et perspectives

Le mode *m* = 1

FIG.: Champ de vitesses utilisé

Application à l'effet dynamo

Conclusions et perspectives

Le mode *m* = 1

FIG.: Taux de croissance du mode m = 1 en fonction du saut de μ

FIG.: Champ de vitesses utilisé

	Application à l'effet dynamo	

Le mode m = 1

FIG.: Taux de croissance du mode m = 1 en fonction du saut de μ

FIG.: Variation de $R_{\rm mc}$ en fonction de μ_r , le saut de μ . Valeur asymptotique $R_{\rm mc}^{\infty} \simeq 54$ et $R_{\rm mc} - R_{\rm mc}^{\infty} \propto \mu_r^{-0.52}$.

- ► Disques épais + fortes variations de perméabilité/conductivité ⇒ le mode m = 0 est moins atténué.
- ► Disques fins + variations de perméabilité ⇒ AUCUNE influence sur la partie poloïdale du mode m = 0.
- ► Disques fins + variations de conductivité \Rightarrow AUCUNE influence sur la partie toroïdale du mode m = 0.

- ► Disques épais + fortes variations de perméabilité/conductivité ⇒ le mode m = 0 est moins atténué.
- Disques fins + variations de perméabilité ⇒ AUCUNE influence sur la partie poloïdale du mode m = 0.
- ► Disques fins + variations de conductivité \Rightarrow AUCUNE influence sur la partie toroïdale du mode m = 0.
- ▶ Dans le cas de disques fins, $\gamma \propto \mu_r^{-1}$ lorsque μ_r est grand,

- ► Disques épais + fortes variations de perméabilité/conductivité ⇒ le mode m = 0 est moins atténué.
- ► Disques fins + variations de perméabilité ⇒ AUCUNE influence sur la partie poloïdale du mode m = 0.
- Disques fins + variations de conductivité ⇒ AUCUNE influence sur la partie toroïdale du mode m = 0.
- ▶ Dans le cas de disques fins, $\gamma \propto \mu_r^{-1}$ lorsque μ_r est grand,
- Pour μ_r grand, un faible couplage entre composantes poloïdale et toroïdale pourrait suffire à enclencher la dynamo,

- ► Disques épais + fortes variations de perméabilité/conductivité ⇒ le mode m = 0 est moins atténué.
- ► Disques fins + variations de perméabilité ⇒ AUCUNE influence sur la partie poloïdale du mode m = 0.
- ► Disques fins + variations de conductivité \Rightarrow AUCUNE influence sur la partie toroïdale du mode m = 0.
- Dans le cas de disques fins, $\gamma \propto \mu_r^{-1}$ lorsque μ_r est grand,
- Pour μ_r grand, un faible couplage entre composantes poloïdale et toroïdale pourrait suffire à enclencher la dynamo,
- D'où vient ce couplage ? turbulence du flot autour des pales ? distribution de perméabilité non axisymétrique (pales) ?

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

Plan de la présentation

Le problème MHD

Méthode d'approximation

Le code SFEMaNS

Application à l'effet dynamo

Conclusions et perspectives

		Conclusions et perspect
		0

Conclusion

- Résultats de régularité sur les solutions des équations de Maxwell,
- Nouvelle méthode de résolution de ces équations,
- > Adaptation dans un code 3d à géométrie axisymétrique,
- Nouvelle étape de parallélisation,
- Exploration de dynamo avec sauts de μ,
- Importance des sauts de perméabilité dans la dynamo VKS.

ves

		Conclusions et perspectives
		00

Perspectives

- Étude plus précise de la dynamo de type Busse & Wicht,
- Ajout éventuel d'une composante verticale de la vitesse dans cette dynamo (~> modèle de la dynamo Ponomarenko),
- Étude plus précise des pales dans la dynamo VKS,
- Amélioration du solveur nst,
- Prise en compte de perméabilité (resp. conductivité) dépendant de θ ou du temps,
- Amélioration de la parallélisation dans les plans méridiens.

Merci de votre attention