A new Lagrange finite element method for Maxwell equations

A. Bonito ${ }^{1}$, J.-L. Guermond ${ }^{1}$, F. Luddens ${ }^{1,2}$

${ }^{1}$ Department of Mathematics, Texas A\& M University College Station, TX
${ }^{2}$ Université Paris XI
Orsay, France

Finite Element Rodeo, March 5-6, 2010

Position of the problem

Objectives
Given a domain Ω, solve the eigenvalue problem :

$$
\left\{\begin{array}{rll}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mathbf{E} & \\
\text { in } \Omega \\
\mathbf{E} \times \mathbf{n} & =0 & \\
\text { on } \partial \Omega
\end{array}\right.
$$

Position of the problem

Objectives
Given a domain Ω, solve the eigenvalue problem :

$$
\left\{\begin{aligned}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mathbf{E} & & \text { in } \Omega \\
\mathbf{E} \times \mathbf{n} & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Requirements

- use Lagrange finite element

Position of the problem

Objectives
Given a domain Ω, solve the eigenvalue problem :

$$
\left\{\begin{array}{rll}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mathbf{E} & \\
\text { in } \Omega \\
\mathbf{E} \times \mathbf{n} & =0 & \\
\text { on } \partial \Omega
\end{array}\right.
$$

Requirements

- use Lagrange finite element
- use low order polynomials

Position of the problem

Objectives
Given a domain Ω, solve the eigenvalue problem :

$$
\left\{\begin{array}{rll}
\nabla \times \nabla \times \mathbf{E} & =\lambda \mathbf{E} & \\
\text { in } \Omega \\
\mathbf{E} \times \mathbf{n} & =0 & \\
\text { on } \partial \Omega
\end{array}\right.
$$

Requirements

- use Lagrange finite element
- use low order polynomials
- use as less as possible information about Ω

Boundary value problem

First consider, for $\mathbf{E} \in \mathbf{H}$ the following

$$
\left\{\begin{array}{l}
\text { find } \mathbf{B} \in \mathbf{X} \text { such that } \\
\nabla \times \nabla \times \mathbf{B}=\mathbf{E}
\end{array}\right.
$$

with :

$$
\begin{aligned}
\mathbf{H} & :=\left\{\mathbf{F} \in \mathbf{L}^{2}(\Omega) \mid \nabla \cdot \mathbf{F}=0\right\} \\
\mathbf{X} & :=\mathbf{H}_{0, \operatorname{curl}}(\Omega) \cap \mathbf{H} \\
\mathbf{H}_{0, \operatorname{curl}}(\Omega) & :=\left\{\mathbf{F} \in \mathbf{L}^{2}(\Omega) \mid \nabla \times \mathbf{F} \in \mathbf{L}^{2}(\Omega) \text { and } \mathbf{F} \times \mathbf{n}_{\mid \partial \Omega}=0\right\}
\end{aligned}
$$

Variational problem

Problem

$$
\left\{\begin{array}{l}
\text { find } \mathbf{B} \in \mathbf{X} \text { such that } \forall \mathbf{F} \in \mathbf{X} \\
(\nabla \times \mathbf{B}, \nabla \times \mathbf{F})=(\mathbf{E}, \mathbf{F})
\end{array}\right.
$$

We will write $\mathbf{B}=A E$.

Variational problem

Problem

$$
\left\{\begin{array}{l}
\text { find } \mathbf{B} \in \mathbf{X} \text { such that } \forall \mathbf{F} \in \mathbf{X} \\
(\nabla \times \mathbf{B}, \nabla \times \mathbf{F})=(\mathbf{E}, \mathbf{F})
\end{array}\right.
$$

We will write $\mathbf{B}=A E$.

- the bilinear form is coercive on $\mathbf{X} \rightsquigarrow A$ is well-defined.
- we have an eigenvalue problem for A.
- A can be defined on $L^{2}(\Omega)$.
- we have to deal with the divergence-free constraint.

State of the art

Penalty in $L^{2}(\Omega)$

- add $(\nabla \cdot A E, \nabla \cdot F)$ to the bilinear form.

State of the art

Penalty in $L^{2}(\Omega)$

- add ($\nabla \cdot A E, \nabla \cdot F)$ to the bilinear form.
- functional framework : $\mathbf{H}_{0, \operatorname{curl}}(\Omega) \cap \mathbf{H}_{\text {div }}(\Omega)$.
- works well in smooth or convex domains.

State of the art

Penalty in $L^{2}(\Omega)$

- add ($\nabla \cdot A E, \nabla \cdot F)$ to the bilinear form.
- functional framework : $\mathbf{H}_{0, \operatorname{curl}}(\Omega) \cap \mathbf{H}_{\text {div }}(\Omega)$.
- works well in smooth or convex domains.

Non-smooth domains (Costabel et al., '91)
If Ω is non-smooth and non-convex, the space $\mathbf{H}_{0, \operatorname{curl}}(\Omega) \cap \mathbf{H}^{1}$ is a
closed proper subset of $\mathbf{H}_{0, \operatorname{curl}}(\Omega) \cap \mathbf{H}_{\text {div }}(\Omega)$.

State of the art

Penalty in $L^{2}(\Omega)$

- add ($\nabla \cdot A E, \nabla \cdot F)$ to the bilinear form.
- functional framework : $\mathbf{H}_{0, \operatorname{curl}}(\Omega) \cap \mathbf{H}_{\text {div }}(\Omega)$.
- works well in smooth or convex domains.

Non-smooth domains (Costabel et al., '91)
If Ω is non-smooth and non-convex, the space $\mathbf{H}_{0, \operatorname{curl}}(\Omega) \cap \mathbf{H}^{1}$ is a closed proper subset of $\mathbf{H}_{0, \text { curl }}(\Omega) \cap \mathbf{H}_{\text {div }}(\Omega)$.

Weighted penalty in $L^{2}(\Omega)$ (Costabel et al., '02 , Buffa et al., '10)

- add $\left(w_{\gamma} \nabla \cdot A E, w_{\gamma} \nabla \cdot \mathbf{F}\right)$ to the bilinear form.
- $w_{\gamma} \sim d^{\gamma}$, with $d=$ distance to the singular edges/vertices.
- γ depends on the regularity of the domain.

New formulation (I)

Penalty in \mathbf{H}^{-1}
Find $A \mathbf{E} \in \mathbf{H}_{0, \text { curl }}, p \in H_{0}^{1}(\Omega)$ s.t., $\forall \mathbf{F} \in \mathbf{H}_{0, \text { curl }}, q \in H_{0}^{1}(\Omega)$,

$$
\begin{aligned}
(\nabla \times \mathbf{A E}, \nabla \times \mathbf{F})+(\nabla p, \mathbf{F}) & =(\mathbf{E}, \mathbf{F}) \\
(\mathbf{A E}, \nabla q)-(\nabla p, \nabla q) & =0
\end{aligned}
$$

New formulation (I)

Penalty in \mathbf{H}^{-1}
Find $A \mathbf{E} \in \mathbf{H}_{0, \text { curl }}, p \in H_{0}^{1}(\Omega)$ s.t., $\forall \mathbf{F} \in \mathbf{H}_{0, \text { curl }}, q \in H_{0}^{1}(\Omega)$,

$$
\begin{aligned}
(\nabla \times \mathbf{A E}, \nabla \times \mathbf{F})+(\nabla p, \mathbf{F}) & =(\mathbf{E}, \mathbf{F}) \\
(\mathbf{A E}, \nabla q)-(\nabla p, \nabla q) & =0
\end{aligned}
$$

Discrete counterpart
Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}, p_{h} \in M_{h}$ such that, for all $\mathbf{F}_{h} \in \mathbf{X}_{h}, q_{h} \in M_{h}$,

$$
\begin{aligned}
& \left(\nabla \times A_{h} \mathbf{E}, \nabla \times \mathbf{F}_{h}\right)+\left(\nabla p_{h}, \mathbf{F}_{h}\right) \\
- & \left(A_{h} \mathbf{E}, \nabla q_{h}\right)+\left(\nabla p_{h}, \nabla q_{h}\right) \\
= & \left(\mathbf{E}, \mathbf{F}_{h}\right)
\end{aligned}
$$

New formulation (I)

Penalty in \mathbf{H}^{-1}
Find $A \mathbf{E} \in \mathbf{H}_{0, \text { curl }}, p \in H_{0}^{1}(\Omega)$ s.t., $\forall \mathbf{F} \in \mathbf{H}_{0, \text { curl }}, q \in H_{0}^{1}(\Omega)$,

$$
\begin{aligned}
(\nabla \times \mathbf{A E}, \nabla \times \mathbf{F})+(\nabla p, \mathbf{F}) & =(\mathbf{E}, \mathbf{F}) \\
(A \mathbf{E}, \nabla q)-(\nabla p, \nabla q) & =0
\end{aligned}
$$

Discrete counterpart
Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}, p_{h} \in M_{h}$ such that, for all $\mathbf{F}_{h} \in \mathbf{X}_{h}, q_{h} \in M_{h}$,

$$
\begin{aligned}
& \left(\nabla \times A_{h} \mathbf{E}, \nabla \times \mathbf{F}_{h}\right)+\left(\nabla p_{h}, \mathbf{F}_{h}\right) \\
- & \left(A_{h} \mathbf{E}, \nabla q_{h}\right)+\left(\nabla p_{h}, \nabla q_{h}\right) \\
+ & h^{2}\left(\nabla \cdot A_{h} \mathbf{E}, \nabla \cdot \mathbf{F}_{h}\right) \\
= & \left(\mathbf{E}, \mathbf{F}_{h}\right)
\end{aligned}
$$

- the approximation converges to the right solution,
- it works even if the domain is non-smooth and non-convex,
- with stabilization, we can take P_{2} elements for $A_{h} \mathbf{E}, P_{1}$ for p_{h},
- convergence is independent of the degree of the polynomials for M_{h}.
- the approximation converges to the right solution,
- it works even if the domain is non-smooth and non-convex,
- with stabilization, we can take P_{2} elements for $A_{h} \mathbf{E}, P_{1}$ for p_{h},
- convergence is independent of the degree of the polynomials for M_{h}.

But we still have compactness issues.

New formulation (II)

Penalty in $\mathbf{H}^{-\alpha}$
Take $\alpha \in\left(\frac{1}{2}, 1\right)$. Find $A_{h} \mathbf{E} \in \mathbf{X}_{h}, p_{h} \in M_{h}$ such that, for all $\mathbf{F}_{h} \in \mathbf{X}_{h}, q_{h} \in M_{h}$,

$$
\begin{aligned}
& \left(\nabla \times A_{h} \mathbf{E}, \nabla \times \mathbf{F}_{h}\right)+\left(\nabla p_{h}, \mathbf{F}_{h}\right) \\
- & \left(A_{h} \mathbf{E}, \nabla q_{h}\right)+h^{2(1-\alpha)}\left(\nabla p_{h}, \nabla q_{h}\right) \\
+ & h^{2 \alpha}\left(\nabla \cdot A_{h} \mathbf{E}, \nabla \cdot \mathbf{F}_{h}\right) \\
= & \left(\mathbf{E}, \mathbf{F}_{h}\right)
\end{aligned}
$$

Theorem
Consider $A_{h}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$. For $\alpha \in\left(\frac{1}{2}, 1\right)$, the sequence $\left\{A_{h}\right\}_{h>0}$ is collectively compact.

- the approximation converges to the right solution,
- it works even if the domain is non-smooth and non-convex,
- with stabilization, we can take P_{2} elements for $A_{h} \mathbf{E}, P_{1}$ for p_{h},
- convergence is independent of the degree of the polynomials for M_{h},

But we still have compactness issues.

$\lambda_{1} \approx 1.47562182408$		
h	val	rel. err
0,1	1.612	$8.8 \mathrm{E}-02$
0,05	1.568	$6.1 \mathrm{E}-02$
0,025	1.545	$4.6 \mathrm{E}-02$
0,0125	1.520	$2.9 \mathrm{E}-02$
$\lambda_{2} \approx 3.53403136678$		
h	val	rel. err
0,1	3.536	$6.5-04$
0,05	3.535	$1.8 \mathrm{E}-04$
0,025	3.534	$4.9 \mathrm{E}-05$
0,0125	3.534	$1.4 \mathrm{E}-05$

THANK YOU

