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Outline

• Model reduction for optimization and probabilistic 
applications
• A model-constrained optimization framework

• Efficient nonlinear model reduction

• Examples
• Probabilistic analysis of compressor unsteady 

aerodynamics
• Real-time inverse problems for contaminant transport
• Bayesian inference of combustion parameters



Why Model Reduction?
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Key challenge: probabilistic analyses of large-scale 
(e.g. CFD) models 

• Compressor blade mistuning: small
variations in blade structural parameters
and blade shape can have a large
impact on blade row performance 

• 2D CFD model unsteady analysis 
for two blade passages: 
~3 minutes per geometry

• Monte Carlo simulation: 
5000 samples ≈10 days 
50,000 samples ≈ 3.5 months



Parameterized Dynamical Systems



Example: CFD Systems



Reduced-Order Dynamical Systems



Large-Scale Reduction Methods

• Determine the projection
where V contains m basis vectors

so that m << n and system dynamics are captured 
accurately:

• Many model reduction methods for large-scale systems
• Krylov-based methods, proper orthogonal decomposition, balanced 

truncation, reduced basis, modal analysis, Fourier model reduction, 
optimization approaches, et al.

• Methodology “mature” for linear time-invariant systems with 
few inputs/few outputs
• Key challenges: nonlinear systems, parametric inputs, sampling, 

rigorous error guarantees
• Model reduction for optimization versus just simulation



Model Reduction for Optimization and Probabilistic Applications 

• Sampling of input space (parameters and time) to 
determine the basis is a critical question for model 
reduction application to design, optimization, inverse 
problems, probabilistic analysis

• Krylov-based methods (LTI systems): Iterative Rational
Krylov Algorithm (Gugercin, Antoulas & Beattie, 2006)

• POD basis for optimal control: Adaptive methods (Afanasiev &

Hinze, 1999), TRPOD (Arian, Fahl & Sachs, 2000), OS-POD (Kunisch &
Volkwein, 2006)

• General reduced basis construction: Greedy algorithm (Veroy,
Prud’homme, Rovas & Patera, 2003; Grepl & Patera, 2005)
• Adaptive heuristic to choose “good” sample points
• Sample the location in parameter space of maximum error between 

full and reduced-order model outputs 



Sampling: Model-Constrained Optimization

• Formulate the task of finding the POD snapshot sample 
points as a model-constrained optimization problem
• Adaptive sampling

(sequence of optimization
problems)

• Update POD basis after
each greedy cycle

• Linear problem with initial-
condition parameters:
explicit solution via
eigenvalue problem
(Bashir, Willcox, Ghattas, van
Bloemen Waanders, Hill, 2007)

• Nonlinear parametric dependence: solve with tailored
PDE-constrained optimization algorithm (Bui-Thanh, Willcox, Ghattas, 
2008)



Model-Constrained Optimization

Nonlinear Parametric Dependence



Model-Constrained Optimization

Objective function targets 
error in current reduced-
order model outputs over 
the parameter space

Nonlinear Parametric Dependence



Model-Constrained Optimization

Nonlinear Parametric Dependence

Large-scale governing 
equations as constraints to 
define y(t)



Model-Constrained Optimization

Nonlinear Parametric Dependence

Reduced-order model as 
constraints to define yr(t)



Model-Constrained Optimization

Nonlinear Parametric Dependence

Bounds on parameters



Model-Constrained Optimization

Nonlinear Parametric Dependence

•

•

•

Solve efficiently using state-of-the-art
PDE-constrained optimization methodology 
(interior-reflective trust-region inexact-
Newton conjugate-gradient method)

For reduced model of fixed size, 
computational cost scales ~linearly with the 
dimension of the parameter space

Can replace actual error with error estimator 
or error indicator (e.g. residual) to eliminate 
full-scale system constraints



Steady Parametric Problem: Thermal Fin Design
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• Model-constrained optimization sampling 
approach for parametric input spaces 
• Application to thermal fin 

design problem with 21 
parameter input space

• Finite element model:
17,899 states

• Reduced model has 
3-4 orders magnitude
lower error compared
to Latin hypercube,
log-random, and other
sampling methods



Unsteady Parametric Problem: Blade Shape Variations

Goal: create a reduced-order model that captures 
input/output mapping between plunging motion input 
and lift force output over a range of blade geometries.



Unsteady Parametric Problem: Blade Shape Variations

• Blade geometric variations parameterized by a set of 
geometric modes, wi

• Described by ns geometry parameters zi

• With some assumptions, CFD model dependence on 
geometry can be written



Unsteady Plunging Motion

• Forced response of two blade passages to sinusoidal 
plunging motion (180° interblade phase angle)

• Full model: n=103,008
• Reduced model: m=201, but offline cost ~3 hours
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Monte Carlo Simulations

• Parameterized reduced model used to evaluate unsteady 
response over a range of geometry variations

• Full model: n=103,008; ~3 mins per geometry
• Reduced model: m=201, <0.1 secs per geometry




Monte Carlo Simulation Results
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• Work per cycle for plunging motion as blade geometry varies
• Same 10,000 random samples in each case

−1.94 −1.92 −1.9 −1.88 −1.86 −1.84 −1.82 −1.8 −1.78
0

50

100

150

200

250

300

Work per cycle

Fr
eq

ue
nc

y

Reduced model
~0.2 hours

CFD model
~500 hours



Real-Time Inverse Problem Applications

• Real-time inversion problems can be formulated as 
PDE-constrained optimization problems
• Emergency response, hazard assessment, structural health 

monitoring, etc.

• Typical scenario: contaminant 
transport through 3D urban 
canyon
• Wind from mesoscale models (MM5)
• Sparse sensor readings of 

concentration
• Solve inversion problem to 

determine initial condition
• Solve forward problem to 

determine response

Goal: create a reduced-order model that predicts outputs 
of interest over “all important” initial conditions



Model-Constrained Optimization: Linear Case

• Linear problem: greedy sampling
via eigenvectors of the Hessian

• Guaranteed error bound for 
reduced model

• p=31 eigenvectors leads to 
reduced model with m=137 



Contaminant Transport Inverse Problem
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Full model: 68,921 states
Reduced model: 137 states
Six sensor locations, Pe=900

Full Reduced



Reduction of Nonlinear Systems

• Nonlinear systems: standard projection approach leads to 
a model that is low order but still expensive to solve

• Proposed approach: interpolation (Barrault, Maday, Nguyen, Patera, 

2004)

• Approximate the nonlinear term using interpolation
• Leads to an efficient offline/online scheme



Efficient Reduction of Nonlinear Systems

• Compute the snapshot set
• For each snapshot, compute the state and the nonlinear term

• Compute the POD basis that spans the state (N basis 
vectors)

• Compute the POD interpolation basis that spans the 
nonlinear terms (M basis vectors)

• Compute a set of spatial interpolation points (various 
heuristic methods)

• Offline: form and store the parameter-independent matrices 
• Online solution of reduced model cost:

O(MN    2) per Newton iteration

M=number of 
interpolation points

N=number of state 
basis functions



Nonlinear Combustion Chamber Model

Molar fraction of fuel for (ln(A), E) = (5.00, 0.15)

Molar fraction of fuel for (ln(A), E) = (7.25, 0.15)

Molar fraction of fuel for (ln(A), E) = (7.25, 0.05)



Model Reduction for CDR Problem

• Finite element model leads to nonlinear system of 
equations:

• Reduced model has the form:

Linear term Nonlinear term

Products of state and 
interpolation basis vectors 
integrated over domain

State basis vectors 
evaluated at 
interpolation points

Usual projection 
matrices

Usual projection 
vector

Nonlinear term operates 
on M-dimensional vector



Model Reduction for CDR Problem
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CDR Inverse Problem

• Inverse problem: given sparse measurements of 
concentration at certain locations in the combustor, can we 
infer the values of the Arrhenius parameters A and E?

• Deterministic approach: solve a PDE-constrained 
optimization problem to find the solution that best matches 
the measurements
• Combine data measurements with knowledge of governing 

equations
• No way to account for measurement error
• Yields no information regarding uncertainty in the “best estimate”

• Bayesian formulation: solution is a distribution of parameter 
estimates
• Incorporates measurement error
• Incorporates a priori knowledge of parameter values
• Requires Markov Chain Monte Carlo simulation, i.e. thousands of 

forward solves. Expensive!



CDR Inverse Problem

• Inverse problem: given sparse measurements, y*, infer the 
values of the Arrhenius parameters, z:

• Bayes theorem relates forward and inverse probabilities:

Reduced model

Knowledge of parameters 
before collecting measurements 
(prior probability)

Conditional probability of 
outputs given input parameters 
(forward probability)

Knowledge of parameters 
given a set of measurements 
(posterior probability)



Bayesian Uncertainty Quantification of CDR Inverse Problem
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95% confidence intervals for the mean 
estimates of the Arrhenius parameters.

Marginal posterior histograms for 
Arrhenius parameters. Note that 
parameters can vary within the 
ranges [5.00, 7.25] and [0.05, 0.15].

ln(A) E

ln(A)
E

FEM: 10,000 samples, ~110 hours
ROM: 10,000 samples, ~100 seconds



Summary

• Successful application of model reduction in a broad range 
of fields
• Optimal control, fluid dynamics, structural dynamics, circuit design, 

geophysics, atmospheric modeling

• Research challenges being addressed to transition from 
reduced-order models for simulation to reduced-order 
models for optimization
• Model-constrained optimization approach to sampling and building 

the reduced basis
• Opens a new class of problems: design, inverse problem 

applications, probabilistic analyses

• Ongoing research
• Bayesian approach to inverse problems
• The role of reduced models in the

probabilistic setting
• Sampling in infinite-dimensional

parameter space 
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