An accurate reduced order model for unsteady flows controlled by synthetic jets

Jessie Weller Edoardo Lombardi Angelo Iollo

Institut de Mathématiques de Bordeaux

INRIA project MC2

March 31, 2008

POD Workshop

Industrial Applications of Low order models based on POD

▲ 重 ▶ 重 ∽ Q (~
March 31, 2008 1 / 18

POD ROM of flow past a bluff body

POD database :

- Control using actuators placed on the body.
- Solutions obtained with one control law, or more.

Build a ROM that :

- ▶ is Accurate when integrated with database control law(s)
- can predict solutions for reasonable changes in control law
- can be used for optimization

イロト イポト イヨト イヨト

Setup

Confined square cylinder + incompressible Navier-Stokes

Simulation of a blowing/suction control using synthetic jets placed on the cylinder :

イロト イヨト イヨト イヨト

Reduced Order Model (1)

Full Navier-Stokes simulation with control law c(t)

 \Rightarrow solutions at N_t time instants : $\mathbf{u}(t^k, x), k = 1..N_t$

Definition of snapshots for building a POD basis :

$$\mathbf{w}^{k}(x) = \mathbf{u}(t^{k}, x) - \bar{\mathbf{u}}(x) - c(t^{k})\mathbf{u}_{c}(x)$$

where functions $\bar{\mathbf{u}}$ and \mathbf{u}_c are chosen such that the snapshots are equal to zero at inflow, outflow, and jet boundaries.

• Build POD basis Φ_k^c , and perform Galerkin projection of equations.

イロト イポト イヨト イヨト 三日

Reduced Order Model (2)

• For $\mathbf{\bar{u}}$: Simulation with c = 0 + averaging

▶ For $\mathbf{u_c}$: Simulation with $c = c^{\star} + \text{averaging} \Rightarrow \mathbf{\bar{u}'}$, $\mathbf{u_c} = (\mathbf{\bar{u}'} - \mathbf{\bar{u}})/c^{\star}$

Reduced Order Model (3)

► In Navier-Stokes $\mathbf{u}(t, \mathbf{x})$ is replaced by $\bar{\mathbf{u}} + c(t)\mathbf{u}_{\mathbf{c}} + \sum_{k=1}^{N_r} a_k(t)\Phi_k^c(\mathbf{x})$.

Projection onto the POD modes leads to a system of ODEs :

$$\left\{\begin{array}{rrl} \dot{a}_r(t) &=& f_r(\mathbf{a}(t), \mathcal{C}(t), \widehat{\mathbf{X}}) \\ a_r(0) &=& a_r^0 \end{array} \right. \qquad 1 \leq r \leq N_r$$

where :
$$f_r(\mathbf{a}(t), c(t), \widehat{X}) = \widehat{A}_r + \widehat{C}_{kr} a_k(t) - \widehat{B}_{ksr} a_k(t) a_s(t) - \widehat{E}_r \dot{c}(t) - \widehat{F}_r c^2(t) + [\widehat{G}_r - \widehat{H}_{kr} a_k(t)] c(t)$$

System matrices \widehat{A} , \widehat{B} , \widehat{C} , \widehat{E} , \widehat{F} , \widehat{G} and \widehat{H} depend only on $\overline{\mathbf{u}}$, \mathbf{u}_c and the modes Φ_k^0 .

In the following we call the above model $\widehat{M}^{\mathcal{C}}$.

<ロ> (日) (日) (日) (日) (日)

Model Accuracy (1)

A small number of modes are needed to capture the energy in a snapshot.

If
$$\hat{a}_k(t) = (\mathbf{u}(t, \cdot), \Phi_k^{\mathcal{C}})_2$$

Then $\bar{\mathbf{u}}(\mathbf{x}) + c(t)\mathbf{u}_{\mathbf{c}}(\mathbf{x}) + \sum_{k=1}^{N_r} \hat{a}_k(t)\Phi_k^{\mathcal{C}}(\mathbf{x}) \approx \mathbf{u}(t,\cdot)(\mathbf{x})$ for N_r small

A solution and its reconstruction with $N_r = 6$

POD Workshop

Industrial Applications of Low order models based on POD

イロト イポト イヨト イヨト 三日

Model Accuracy (2)

but there are differences between, 'a' (solution of $\widehat{M}^{\mathcal{C}}$) and ' \hat{a} '

March 31, 2008 8 / 18

Calibration (1)

Unresolved modes are modelled as linear combinations of the others and the control law.

 \rightarrow Adjust certain system matrices so as to minimize the difference between \hat{a}_k and a_k

Method 1

$$\min_{X}\int_{0}^{T}\sum_{k=1}^{N_{r}}\left(\hat{a}_{k}(t)-a_{k}(t)\right)^{2}dt$$

subject to :

$$\begin{cases} \dot{a}_r(t) = f_r(\mathbf{a}(t), c(t), X) \\ a_r(0) = a_r^0 \end{cases} \qquad 1 \le r \le N_r$$

Method 2

$$\min_{X} \int_{0}^{T} \sum_{k=1}^{N_{r}} \left(\dot{\hat{a}}_{k}(t) - f_{k}(\hat{a}(t), c(t), X) \right)^{2} dt + \alpha \left\| X - \widehat{X} \right\|^{2}$$

with α small.

POD Workshop

Industrial Applications of Low order models based on POD

▶ ▲ 重 ▶ 重 ∽ Q ○ March 31, 2008 9 / 18

<ロ> (日) (日) (日) (日) (日)

Calibration (2)

Effect of calibration on time coefficients

Effect of calibration on a cost functional

$$\mathcal{F}(\mathbf{a}) = \sum_{r=1}^{6} a_k^2(t)$$

In the example, $\mathcal{F}(\hat{\mathbf{a}}) = 166.98$ Relative error between $\mathcal{F}(\mathbf{a})$ and $\mathcal{F}(\hat{\mathbf{a}})$ before calibration : 4.3 % Relative error after calibration : 0.35 %

POD Workshop

March 31, 2008 10 / 18

• • • • • • • • • • • • •

Calibration (3)

Control defined by feedback = extra errors

 $c(t) = \kappa \times v(t, \mathbf{x}_s)$

where \mathbf{x}_s is a point in the cylinder wake.

Prediction (1)

Simulations at Re = 60 with c^1, c^2 and c^3 . Models tested with c^4 .

POD Workshop

Industrial Applications of Low order models based on POD

March 31, 2008 12 / 18

Prediction (2)

Industrial Applications of Low order models based on POD

March 31, 2008 13 / 18

Model with two control laws

 \triangleright With N_c different control laws the calibration problem stays the same size if 'Method 2' is used :

$$\min_{X} \sum_{i=1}^{N_c} \int_0^T \sum_{k=1}^{N_r} \left(\dot{\hat{a}}_k^i(t) - f_k(\hat{\mathbf{a}}^i(t), c^i(t), X) \right)^2 dt + \alpha \left\| X - \widehat{X} \right\|^2$$

Three 'double control' models.

-

Model with three control laws

Using the Model for optimization (1)

Seek c that solves
$$:\min_{c} \mathcal{F}(\mathbf{a}) + \beta \int_{0}^{T} \dot{c}^{2}(t) dt$$

subject to :

$$\begin{cases} \dot{a}_r(t) &= f_r(\mathbf{a}(t), \mathcal{C}(t), X) \\ a_r(0) &= a_r^0 \end{cases} \quad 1 \le r \le N_r$$

Algorithm :

- Choose c^0 , run N-S with c^0 , build POD-ROM model
- Project c^0 onto a basis of 30 B-Spline functions.

$$\mathcal{L}(c) = \mathcal{F}(\mathbf{a}) + \beta \int_0^T \dot{c}^2(t) dt + \int_0^T \sum_r b_r(t) \left(\dot{a}_r(t) - f_r(\mathbf{a}(t), c(t), X) \right) dt$$

 Calculate gradient of L(c⁰) with respect to the B-Spline control points.

POD Workshop

Using the Model for optimization (2)

- Build 'Single control' model.
- Perform one step optimization : $c^0 \rightarrow c^1$

- Inject new control law c^1 into N-S
- Project on initial POD base and re-evaluate functional :

0.2 0.1 0 0.1 -0.1 -0.2 -0. -0.3 -0.2 -0.4 -0.3 -0.5 -0.4 30 40 10 20 30 40 10 30 0 10 20 50 0 50 0 20 40 k = 1, k = 3, k = 6Evolution of coefficients a_k ,

 $\mathcal{F}(\mathbf{a}) = 179.43 > 178.46$

POD Workshop

1.5

0.5 0

-0.5

-1.5

-1

-2 -2.5

Industrial Applications of Low order models based on POD

March 31, 2008 17 / 18

Using the Model for optimization (3)

- Build 'Double control' model using the initial solution and the new one.
- ▶ perform one step optimization : $c^0 \rightarrow c^2$
- Inject new control law c² into N-S

Project on initial POD base and re-evaluate functional

