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Galerkin projection

• Dynamics evolve on a high-dimensional space (or infinite-dim’l)

• Project dynamics onto a low-dimensional subspace S

• Define dynamics on the subspace by

• Two choices:

• choice of subspace

• choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)
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S

f(r)

PSf(r)
r

ker P̃S

P̃Sf(r)

is a projectionPS : V → Sṙ = PSf(r)

r ∈ S ⊂ V

x ∈ Vẋ = f(x)



Energy-based inner products

• Reduced-order models can behave unpredictably

• Can even change stability type of equilibria
     [Rempfer, Thoret. CFD 2000]

• Simple example: consider the system:

• Sink at the origin

• Projection onto x1 axis is

• Can at least fix this simple problem by changing the inner product 
used for the projection

• Cute result: If an orthogonal projection is used with an “energy-
based” inner product, this will ensure stability of the origin

• Note: does not guarantee stability preserved for other 
equilibrium points, periodic orbits, etc.
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d

dt

(
x1

x2
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=

(
1 −1
3 −2

) (
x1

x2

)

ẋ1 = x1 unstable

[Rowley, T Colonius, RM Murray, Phys D 2004]



Energy-based inner products

• Consider a system with a stable equilibrium point at the origin:

• Consider an inner product whose induced norm is a Liapunov 
function (“energy-based”):

• Reduced-order dynamics given by orthogonal projection

• Then V is a Liapunov function for the reduced-order system:

• So: if an energy-based inner product is used, the origin is stable for 
the reduced-order system, regardless of the subspace used for the 
projection
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ẋ = f(x) f(0) = 0 x ∈ Rn

〈x, y〉 = xT Qy, Q > 0
V (x) = xT Qx is a Liapunov function
V̇ (x) = 2xT f(x) ≤ 0, ∀x ∈ U

r = Px

ṙ = Pf(r)
P 2 = P

〈x, Py〉 = 〈Px, y〉 QP = PT Q

V̇ (r) = 2rT QPf(r) = 2rT PT Qf(r) = 2(Pr)T Qf(r)

= 2rT Qf(r) ≤ 0
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Are POD modes optimal?

• POD modes are not optimal for Galerkin projection

• POD determines a subspace that optimally captures the energy in 
a given dataset

• These modes are usually not optimal for Galerkin projection

• Low-energy modes can play an important role in the dynamics
[Aubry, Holmes, Lumley, 1988; Smith 2002 PhD thesis, Princeton]

• Can often do better with balanced truncation [Moore 1981]
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Balanced truncation

• Why doesn’t everybody use this?

• Valid for stable, linear systems

• Extensions for unstable systems [Jonckheere & Silverman 1983, Zhou 
2001]

• Extensions for nonlinear systems [Scherpen 1993, Lall, Marsden, 
Glavaski 1999]

• Computationally expensive for large systems

• n3 computational time: n > 105 for typical fluids simulations

• Improvements for large systems

• POD is tractable for large systems.  Can we extend, e.g., the 
method of snapshots, to compute balancing transformations?

• Based on earlier snapshot-based methods:
   Lall, Marsden, & Glavaski, 1999
    Willcox & Peraire, 2001

9



Overview of balanced truncation
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What are you interested in 
capturing?!

States that have large influence!
on the output!

States easily excited!
by an input!

EX

EY

EX = EY



• Construct Gramians from impulse response data

• Not solving Liapunov equations

• For a single input: compute impulse-state response:

solution

• The controllability Gramian is then

• Discretize in time, collect snapshots into a matrix:

• Then

• For observability Gramian, same procedure, but use adjoint 
equations

• For multiple inputs/outputs, same procedure, but do one impulse-
response for each input/output

Empirical Gramians
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x(t) = eAtB

ẋ = Ax, x(0) = B

Wc ≈ XXT

X =




| |

x(t1) · · · x(tm)
| |





Wc =
∫ ∞

0
x(t)x(t)T dt

[Lall et al, 1999]

ż = A∗z z(0) = C∗



Method of snapshots

• POD: method of snapshots vs. direct method

• method of snapshots more efficient when m < n.

• Balanced truncation: method of snapshots

• Empirical Gramians represented as

• Find a balancing transformation with an SVD of
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X =




| |

x1 · · · xm

| |




n× nXXT ϕ = λϕ

POD modes (direct method):

ϕ = Xc

XT Xc = λc

POD modes (method of snapshots):

m×m

[Sirovich, Q Appl Math 1987]

Y T X

Wc = XXT

Wo = Y Y T

n× n

my ×mx

[Rowley, Int. J Bif Chaos, 2005]



Computing modes

• Snapshot matrices

• Compute SVD

• Obtain bi-orthogonal set of modes:
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X =




| |

x(t1) · · · x(tm)
| |



 Y =




| |

z(t1) · · · z(tl)
| |





Ψr =




| |

ψ1 · · · ψr

| |



Φr =




| |

ϕ1 · · · ϕr

| |





Y ∗X = UΣV ∗

Ψ = Y UrΣ−1/2
r

Linearized snapshots Adjoint snapshots

Direct modes
linear combinations of

direct snapshots

Adjoint modes
linear combinations of

adjoint snapshots

Φ = XVrΣ−1/2
r

Ψ∗
rΦr = Ir



Reduced-order models

• Original equations

• Form reduced-order model

• Do not need to transform entire state: just take first r modes

• Extensions to nonlinear systems straightforward

• For instance, compute modes for linearized system, project 
nonlinear dynamics
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ẋ = Ax + Bu

y = Cx + Du

ẋ = f(x)
x(t) =

r∑

j=1

aj(t)ϕj

ȧj(t) = 〈ψj , f(x)〉

ȧ = Ψ∗
rAΦra + Ψ∗

rBu

y = CΦra + Du



Large numbers of outputs

• Often, we are interested in modeling the full state

• If dimension is large, project output onto POD modes

• POD gives optimally-close output-projected system (in 2-norm)
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ẋ = Ax + Bu

y = x
Full stateu

Original system, full dynamics

POD coefficientsu ẋ = Ax + Bu

y = Cx

Output-projected system, full dynamics

Output
projection

ȧ = ΨT AΦa + ΨT Bu

y = CΦa

POD coefficientsu

Reduced-order model

Balanced
truncation



Approximate balanced truncation for large systems

• Method of snapshots enables one to compute approximate 
balanced truncations with cost similar to POD

• One simulation for each control input, one adjoint simulation 
for each output

• One SVD, (# direct snapshots) x (# adjoint snapshots)

• If number of outputs is large, method for projection onto 
smaller-rank output

• Balanced truncation is just POD with respect to an inner product 
defined by the observability Gramian Y:

• Observability Gramian is always a Liapunov function => preserves 
stability!

• Obtain set of bi-orthogonal modes:
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〈x1, x2〉Y = xT
1 Y x2

{ϕ1, . . . ,ϕn}

{ψ1, . . . ,ψn}

〈ψi, ϕj〉 = δij

ẋ = f(x)

x(t) =
∑

j

aj(t)ϕj

ȧj(t) = 〈ψj , f(x)〉

direct modes:
adjoint modes:
bi-orthogonal:

Galerkin:
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Application: Linearized Channel Flow

flow

x,u
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• Plane channel flow with periodic boundary conditions

• Goal: delay transition to turbulence using feedback control 

• Goal: improved understanding of transition mechanisms

• Focus: low-dimensional models of transition

• Linear development of small perturbations

• Transition not predicted correctly by linear stability analysis

• Non-normality of the governing operator results in large transient 
growth of exponentially stable perturbations

• Large linear system with complex dynamic behavior
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Previous work:
Trefethen et al [Science, 1993]
Farrell & Ioannou [96,96,01]
Schmid & Henningson [01]
Bamieh & Jovanovic [01,03]
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Governing Equations

• Navier-Stokes equations linearized about a laminar profile

• Perturbation dynamics fully described by wall-normal velocity v 
and wall-normal vorticity η

• Clamped boundary conditions 

 Orr-Sommerfeld/Squire system Adjoint system
∂

∂t

[
−∆ 0
0 I

] [
v
η

]
=

[
LOS 0
−U ′∂z LSQ

] [
v
η

]
∂

∂t

[
−∆ 0
0 I

] [
v
η

]
=

[
L∗

OS U ′∂z

0 L∗
SQ

] [
v
η

]

LOS = U∂x∆− U ′′∂x −
1

Re
∆2

LSQ = −U∂x +
1

Re
∆

L∗
OS = −U∂x∆− 2U ′∂x∂y −

1
Re

∆2

L∗
SQ = U∂x +

1
Re

∆
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Single-wavenumber perturbation - optimal

• Perturbations of the form

• System can be analyzed in 1-D so that full balanced truncation is tractable, 
allowing comparison with the BPOD approximation and POD

• Well-studied cases (Farrell, Henningson, Reddy, Schmid, Jovanovic, Bamieh)

• Case presented here α=1, β=1 and exhibits rich dynamics
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Modes and HSV - how good is BPOD?

Both HSVs and balancing modes computed accurately up 
to approximately the rank of OP
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8-mode BPOD

4-mode BPOD

8-mode POD

4-mode POD

Single wavenumber - impulse response

• Low-order POD models completely fail to capture energy 
growth

• BPOD model performance matches exact BT 
approximately up to the desired level of accuracy, 
determined by the output projection

Kinetic energy growth

First two outputs
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 Single wavenumber - frequency response
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• For a single wavenumber, frequency response can be computed exactly 

• BPOD captures the resonant peak even at low order

• POD slowly catches up, but has spurious peaks due to eigenvalues near the 
imaginary axis

spurious peaks 
in POD model



C.W. Rowley

• Infinity norms of models also match those of exact BT up to approximately the rank 
of the output projection

• Again, POD ‘catches up’ only at a high rank

Single wavenumber - infinity norms

σr+1 ≤ ‖G−Gr‖∞ ≤ 2Σn
j=r+1σjInfinity error norm bounds
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full BT lower bound
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full BT inf!norm
BPOD OP4
BPOD OP8
POD
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Localized actuator

• Periodic array of localized actuators in 
center of channel

• Large system (32x65x32), 133,120 states, 
exact BT intractable

• Impulse response snapshots obtained via 
linearized DNS, Re=2000

• Complex initial transient which develops 
into a streamwise-constant structure
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Localized actuator - POD model performance
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• Some low-energy POD modes are very important for the system 
dynamics - can’t naively use just the most energetic ones

• Pairs of modes corresponding to traveling structures not important 
for capturing energy growth

• For many POD low-order models, the output can have spurious 
oscillations due to the mode pairs
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Localized actuator - BPOD impulse response

• Three-mode BPOD model excellent at capturing the energy growth

• Rank 8 BPOD model sufficient to correctly capture the dynamics of the first 
five POD modes, compared to at least 23 POD modes 

• Inclusion of some POD modes significantly deteriorates performance (splitting 
of the pairs of oscillating modes)
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Localized actuator - modes

Balancing modes and POD modes look 
similar but the adjoint modes are in 
general quite different => different 

dynamics of models

POD mode 1

POD mode 4

BPOD mode 1 adjoint BPOD mode 1

BPOD and adjoint BPOD modes from OP5

POD BPOD
ȧj(t) = 〈ψj , f(x)〉ȧj(t) = 〈φj , f(x)〉

BPOD mode 4 adjoint BPOD mode 4
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Localized actuator - frequency response

• BPOD 10-mode OP 50-mode model taken as ‘full system’

• POD poorly captures low-pass behavior,  spurious peaks

• Need pairs of BPOD modes to capture peaks 
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Closed-loop control - localized actuator
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Re = 5000, BPOD 3!mode, modes from Re = 2000

 

 

full simulation

open loop

closed loop

C.L. full system
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Re = 5000, BPOD 3!mode, modes from Re = 2000
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Re = 2000, BPOD 3−mode

 

 

full simulation
open loop
closed loop
C.L. full system
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full simulation
open loop
closed loop
C.L. full system

• Using the localized actuator to control a 
disturbance in channel center

• Standard LQR controller

• Using control gains from a 3-mode BPOD model 
reduces energy growth by a factor of 5 

• BPOD works well in closed-loop at off-design 
condition (Re=5000 with modes from Re=2000)
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Nonlinear Evolution of the Localized Perturbation

• The spatial Fourier transform of the x,z 
plane at y=0 illustrates the perturbation 
evolution

• In the linear case the wavenumbers 
decay independently after the large 
transient growth

• Elam = 0.2667 is the energy density of 
the mean laminar flow

• Transition for very small values of initial 
energy E0

• The so-called β-cascade [Henningson et al, 
1993] is observed in the nonlinear 
evolution - higher spanwise 
wavenumbers are introduced rapidly

nonlinear evolution at E0/Elam = 3.323 x 10-4 

linear evolution of wall-normal velocity
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Delaying Transition Using Feedback Control

• Try to increase the transition threshold of a localized perturbation (after Reddy et al)

• The threshold is defined as the energy density of the initial perturbation above which the 
flow transitions to turbulence

• Threshold found to be at E0 = 1.614 x 10-4 of the mean flow energy of the laminar profile, 
Elam = 0.2667
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E0/Elam 3.323e−04
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Closed-Loop Control

• Explanation: the BPOD modes do not have components at high β, and are not able to 
suppress high betas once they arise, but the ‘aggressive’ controller suppresses low β 
wavenumbers so that the higher β’s emerge at very low amplitudes and decay linearly

• Transition threshold increased by a factor of 17 for R=0.01 

• Work in progress: see how projection of full N-S equations onto linear BPOD modes will 
model the perturbation evolution, and possibly design a nonlinear controller 

• The feedback gains computed using LQR for the linear system are used in a full 
nonlinear simulation with E0/Elam = 3.323 x 10-4

• An ‘aggressive’ controller (R=0.1 in LQR) manages to suppress the disturbance
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Motivation leading 
edge vortex

 Leading edge vortices sometime provide 
high lift

 MURI goal: Stabilize these LEVs using 
feedback control

 High transient lift in pitching airfoils due to 
dynamic stall vortex

Pitching airfoil



Dynamical behavior

CL at steady state

 With increasing AoA, flow undergoes a Hopf bifurcation
 Reduced order models to stabilize unstable steady states at high 

AoAs

 Are there high-lift unstable steady states in low aspect ratio 
airfoils?



 A fast null-space based immersed boundary scheme for numerical simulations 
(T. Colonius and K. Taira, CMAME, 2007)

 

Steady state analysis 
 Compute steady states using a wrapper around the DNS

 Solve for zeroes of g(u) using Newton-GMRES

Model problem Actuator: localized 
body force

Re = 100
AoA = 25 or 35

DNS

Barkley and Tuckerman,’99, Kelley, Kevrekidis, and Qiao,’02, Ahuja et al., ‘07



Unstable steady state, AoA = 35 

 Steady, unstable

Unsteady, max lift

Unsteady, min lift

 Steady state lift close to the min. lift of the 
unsteady case

 No leading edge vortex 
 Trailing edge vortex causes reduced lift



Linear stability analysis
 Find the basis spanning the unstable eigenspace of the 

linearized and adjoint flows
 Run the linear simulations with a zero initial condition + 

10-8  random noise

Right eigen-space Left eigen-space



Reduced-order models for unstable systems

Unstable 
eigenvector

Stable subspace

 Decouple stable and unstable subspaces
 Obtain balancing transformation for the stable subspace

 Snapshot based procedure: project out the unstable component at each 
time step

Balanced truncation for unstable systems, Zhou et al., ’99



Model reduction: unstable system

Linearized NS eqns,  105

Reduced order model,  10-50 eqns.

u

u

ys = proj. of xs onto   
       POD modes
xu = unstable state



Impulse response: stable subspace

Vorticity contours: 
Positive in red and 
negative in blue

 Project out the unstable component from the initial condition

− =



Adjoint impulse response

 Four POD modes capture 95% energy
 Adjoint solves with these POD modes as 

initial conditions

Mode 1

Mode 2
u

Projection 
onto POD 
modes



Balancing modes: stable subspace

POD 
modes

Mode 1 Mode 2

Balancing
modes

Adjoint
modes

B
i-o

rt
ho

go
na

l



Model results: controlled case

x
DNS

10-mode

 Control based on a 10-
mode model

 Gain K using LQR

u

a

with control

without control

a = ΨT x



Control in full nonlinear system: 
close to steady state

Results of an 8-mode model

DNS

8-mode

time

Control ON

xu1

ys1



Feedback stabilization at AoA=25

No control

time

CL

 Full state feedback
 Large domain of attraction even 

in the full NL system
 Controller suppresses the vortex 

shedding

Control on



Observer design: velocity sensors
 3 velocity sensors
 Compare projections onto 4 and 20 POD modes
 L2-norm looks similar, but the velocities at sensor locations are poorly 

captured by 4 POD modes

DNS

4-mode proj.

20-mode proj.



Observer based control
 Observer gain obtained using LQG
 Compensator stabilizes the steady state, but there is residual 

noise due to the errors in modeling the system and the 
measurements

DNS

observer



Outline

• Approximate balanced truncation using POD

• Importance of inner product for Galerkin projection

• Balanced truncation

• Method of snapshots

• Applications

• Linearized channel flow

• Separating flow past an airfoil

• Dynamically scaling POD modes

• Free shear layer

• Scaled basis functions

• Template fitting

• Equations for the shear layer thickness

50
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• Evolution history of thickness for temporal shear 
layer (spatially periodic):

• Model initial linear growth, saturation, pairing, and 
eventual viscous diffusion

Modeling free shear layers

51

linear growth

saturation
pairing

saturation

viscous diffusion

Time



Methodology

• Scale POD modes dynamically in y direction to account 
for shear layer spreading

• Scaling invariants: 

• divergence of velocity field

• inner product

• Key idea: template fitting

• Main result: an equation for the shear layer spreading rate:

• as usual, also get equations for time coefficients of POD modes

52



Scaling basis functions

• Write solution in scaled reference frame

• Choose                             : 

• Expand scaled variable    in terms of POD modes

• Advantage of the scaling: capture similar-looking 
structures as shear layer spreads

• Advantage of divergence-invariant mapping: auto-
satisfy continuity equation; simplify pressure term

q(x, y, t) = G(g)q̃(x, g(t)y, t)

q = (u, v)

G(g) =
[

1 0
0 1/g

]
div q = div q̃

q̃

q̃(x, y, t) = u0(y) +
n∑

j=1

aj(t)ϕj(x, y)
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• How do we choose the scaling g(t)?

• Choose g(t) so that              lines up best with a 
preselected template (here, the base flow):

• This means the scaled solution              satisfies

• Geometrically, the set of all “properly scaled” functions    is 
an affine space through     and orthogonal to

• This enables one to write dynamics for how the thickness 
g(t) evolves 

Template fitting

q̃(x, y, t)

d

ds

∣∣∣∣
s=0

‖q̃(x, y, t)− u0(x, h(s)y)‖2 = 0

q̃(x, y, t)
〈

y
∂u0

∂y
, q̃− u0

〉
= 0

q̃
u0 y∂yu0

ġ

g
=

〈
f1

g (ũ), y∂yu0

〉

〈y∂yũ, y∂yu0〉
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for any curve h(s) > 0 with h(0) = 1



Equation for evolution of the thickness

• How does g(t) evolve in time?

• We have a constraint (              lines up best with template     ):

• Differentiate:

• Use equations of motion

• This gives an equation for g:

ġ

g
=

〈
f1

g (ũ), y∂yu0

〉

〈y∂yũ, y∂yu0〉

〈
y
∂u0

∂y
, q̃− u0

〉
= 0

〈
y
∂u0

∂y
,
∂q̃
∂t

〉
= 0

∂q̃
∂t

= fg(q̃)− ġ

g
y
∂q̃
∂y
−G(1/g)Ġ(g, ġ)q̃(x, y, t)
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Galerkin equations for the shear layer

• Equation for the POD mode coefficients:

• retain only modes k=1, n=1 and 2:

• Equation for the scaling g:

• Retaining modes k=1 and 2, n=1 and 2 also 
tractable, but messy

• Use inner product that is preserved under scaling:

ȧ1,2 =
g2c21g + c21

g2n2g + n2
a1,1 +

g2c22g + c22

g2n2g + n2
a1,2 +

1
Re

[
−(

2π

L
)2 +

g2d2g + d2

g2n2g + n2
g2

]
a1,2

+
g2e2g + e2

g2n2g + n2

ġ

g
a1,2,

ȧ1,1 =
g2c11g + c11

g2n1g + n1
a1,1 +

g2c12g + c12

g2n1g + n1
a1,2 +

1
Re

[
−(

2π

L
)2 +

g2d1g + d1

g2n1g + n1
g2

]
a1,1

+
g2e1g + e1

g2n1g + n1

ġ

g
a1,1,

ġ =
c01

n0
a1,1a

∗
1,1g +

c02

n0
a1,2a

∗
1,2g +

c03

n0
a1,1a

∗
1,2g +

c04

n0
a1,2a

∗
1,1g +

1
Re

d0

n0
g3

〈q̃1, q̃2〉g =
∫

Ω
(
1
g
ũ1ũ2 +

1
g3

ṽ1ṽ2)dxdy
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Results

u0 = Ucerfc(η), η =
−y

2g

√
Re
t0

• Base flow with small perturbation

• Base flow: 

• Perturbation is along the unstable eigenfunction of the linearized 
problem

• Consider three separate cases

• No perturbation: viscous growth

• Initial perturbation with k=1: vortex roll-up

• Initial perturbation with k=2:

• vortex roll-up

• pairing

• k=1 mode arises through pairing
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Model results: k=0

• Only one equation left for g:

• Recovers exact theoretical growth rate for Stokes 
problem:

ġ =
1

Re
d0

n0
g3 =⇒ =⇒

0 1000 2000 3000 4000 50001

2

3

4

5

6

δg

δg0
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Movie of DNS

• Initial condition with k=1 (Re = 200)

0 1000 2000 3000 4000 5000

2

3

4

5

6

7

Time

δω

δω0

Growth

Saturation

Viscous
diffusion
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Movie of DNS

• Initial condition with k=2 (Re = 200)

0 1000 2000 3000 4000 50001

2

3

4

5

6

7

Time

δω

δω0

Growth
Saturation

Pairing & growth

Saturation

Viscous 
diffusion
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POD modes

• Energy contained in modes (k=1 initial condition)

• Zero mode contains very little energy - scaling was effective at 
removing the mean spreading

(k,n) lambda Energy (%)

(1,1) 130.3 91.0

(1, 2) 6.8 4.8

(2, 1) 4.5 3.1

all k=0 0.4
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POD modes

• Initial condition with k=1
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POD modes

• Energy contained in modes (k=2 initial condition)

• Scaling still effective at removing the mean spreading (zero mode 
has small energy)

(k,n) lambda Energy (%)
(1,1) 27.5 40.1
(2,1) 37.9 55.2
(1,2) 0.9 1.3
(2,2) 1.6 2.3

all k=0 0.6
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• Initial condition with k=2
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DNS v.s. Model

• Comparison of simulation and model results
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• Thickness and amplitude of 
POD modes for k=1 initial 
condition: projection of full 
simulation

Model results: k=1
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• Thickness and amplitude of 
POD modes for k=1 initial 
condition: low-dimensional 
model

Re(a12)

0 1000 2000 3000 4000 5000

2

4

6

8

10

-80

-60

-40

-20

0

20

67

Phase shift phenomenon: Modes 1 and 2 are out of 
phase during linear growth, in phase after saturation



• Phase delay between the 
first 2 POD modes: 
projection of full simulation

Model results: k=1

• Phase delay between the 
first 2 Pod modes: low-
dimensional model
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• Thickness and amplitude of 
POD modes for k=2 initial 
condition: projection of full 
simulation

Model results: k=2

δω
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Re(a11)

• Thickness and amplitude of 
POD modes for k=2 initial 
condition: low-dimensional 
model
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• Phase delay between the 
first 2 POD modes: 
projection of full simulation

Model results: k=2

• Phase delay between the 
first 2 Pod modes: low-
dimensional model
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Summary

• Approximate balanced truncation

• Approximates exact balanced truncation to as high accuracy as 
desired, using snapshots from linearized and adjoint simulations

• Computational cost similar to POD, once snapshots computed

• For a given number of modes, transients and frequency response 
much more accurately captured than POD models of same order

• Extension of basic approach to model unstable linear systems

• Feedback controllers designed from these models perform well, 
even on full-order, nonlinear systems

• Extensions to (weakly) nonlinear systems straightforward

• Dynamically scaled POD modes

• For systems with self-similar behavior, dynamic scaling decreases 
number of modes required

• Temporal shear layer dynamics modeled with 4 complex modes, 
including linear growth, saturation, pairing, and viscous diffusion
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Outlook

• Outstanding challenges

• Combining ideas from balanced truncation with results from 
experimental data, where adjoints are not available 

• Systematic approach for highly nonlinear systems (far from 
equilibrium)

• Reduced-order models for messy, turbulent flows.  Low-
dimensional models are, strictly speaking, not possible, but one is 
not interested in all of the details

• New control synthesis tools needed for these classes of nonlinear 
systems?
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