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Introduction

 Research motivation: Numerical solution of direct and inverse 
problem of contaminant dispersion

 Need proper initial and boundary conditions
 Need 3D velocity field

 Research constraint: Sparse velocity data is available
 Research objective: Develop methods to predict entire 3D velocity 

fields from sparse data
 Models that achieve this objective should be (at least)

 Dynamically consistent
 Robust to noise and outliers
 Simple



Focus

 Development of model that enables 
approximation of velocity fields at past and 
future instances in time based on velocity 
information available at present time step

 Development of sequential model that updates 
previous estimates of velocity fields when new 
information is provided 



Outline

 Proper orthogonal decomposition (POD)
 Episodic POD (Ep-POD)
 Properties of Ep-POD
 Algorithm of model based on Ep-POD
 Validation through examples

 Flow around 2D cylinder at Re=100
 9-D Lorenz model 



Proper Orthogonal Decomposition
 

POD

….



Ep-POD Model

 A super-snapshot is defined as

 Ep-POD decomposes the super-snapshot as

 If the episodic coefficients are known at any 
given episode, then the spatio-temporal 
evolution of the velocity field can be 
approximated within that episode



Episodic Pod

POD
Super snapshot

Episodic Coefficients Episodic functions



Ep-POD Properties
 Evolution of spatio-temporal basis functions is consistent 

with definition of Rempfer (1994)



Ep-POD Properties
 Formulation directly leads to a vector-autoregressive 

(VAR) model for POD coefficients.

 Models derived from Ep-POD rely on the principle of 
overlapping snapshots.
 If there are N snapshots within an episode then there are (N-1) 

snapshots within the episode that overlap with the previous episode and 
next episode.

 For any given episode ‘p’, there exist (2N-1) episodes that share 
snapshots with the episode ‘p’.



Algorithm for Ep-POD based Model 
Sparse velocity information from sensors is given

Use Reduced Sensor Analysis (RSA)
    to compute the POD coefficients 

Use Ep-POD model to compute
     the episodic coefficients.

Using Episodic POD construct  
 velocity fields at past, present
        and future time steps.



Algorithms for Ep-POD based Model

Time

Past Future

Bottom-Up Model

Top-Down Model

Prediction Range

POD coefficients known at time ‘t’



Ep-POD based Model

 Bottom-up and top-down models are linear 
models given by

 Matrices in model come from principle of 
overlapping of the spatio-temporal 
eigenfunctions



Sequential Model

 If information at multiple instances within an 
episode is available, then Ep-POD based 
model can be modified to get a sequential 
model 



Sequential Model : Long-Term 
Prediction
 Model can also be used for long-term 

prediction. 
 Information between non overlapping 

episodes is passed through “bridging”.

Time



Examples

 Flow around 2D cylinder.
 Re = 100, shedding frequency = 10 Hz
 Snapshots available every 0.0001 seconds
 Snapshots/Episode = 100

 9D chaotic Lorenz model
 Snapshots available every 0.5 seconds
 Snapshots/Episode = 200
 



Example – 2D Cylinder

 Example is used to test accuracy of long-term 
prediction

 POD coefficients are predicted for 5000 
shedding cycles 

 Initial condition at some random time is 
provided 

 Results compared with solution obtained from 
quadratic system of ODEs (Galerkin model)



Example – 2D Cylinder (Galerkin 
Model)



Example – 2D Cylinder (Ep-POD 
Model)



Example 2 – 9D Lorenz Model



Example 2 – 9D Lorenz Model

 Episodic length = 200 time steps
 Example used to test sequential model and its 

robustness to outliers
 Two tests are performed:

 Ep-POD model is provided with coefficients every 40 time steps
 Ep-POD model is provided with noisy coefficients every 20 time 

steps. Noise is white noise with standard deviation of 0.2
 Evolution of the coefficients is tracked for 1200 time 

steps



Example 2 – 9D Lorenz Model (no 
noise)



Example 2 – 9D Lorenz (with noise)



REMARKS

 Ep-POD sequential model is found to be 
robust and is dynamically consistent

 Linear formulation makes implementation fast
 Models work especially well for strongly 

periodic cases
 Ep-POD model behaves similar to a linear 

Kalman filter



REMARKS
 Currently, episodic length is set equal to the 

dominant frequency in the flow
 Effect of episodic length needs to be studied
 Selection of episodic length needs to 

addressed more rigorously
 Model has been tested for very high 

dimensional models



Predicting Complex Flows
Part II: 

Radial Basis Function Approach to 
Modeling Dynamical Systems



Introduction

 Consider a time series given by

 The time series follows from a dynamical 
system given by 



Introduction

 We are interested in the modeling the 
evolution of 

 Given:
 Sample time series
 Time derivatives or pair-wise time series

 The model is derived from the concept of 
surface approximation using radial basis 
functions



RBF-Based Model

 RBF model takes the form of

 where



RBF-Based Model

 The coefficients in the RBF model are solved via a 
system of linear equations  



RBF-Based Model



RBF-Based Model

 If continuous derivatives are given, then

 If pair-wise time series is given, then



Time

Time derivatives given : 

Pair-wise time series given :

t = t i



Examples

 Three examples are considered
 3D Lorenz model
 9D Lorenz model
 Kuramoto-Sivashinsky model

 RBF models are generated for the continuous 
and discrete cases using sample time series

 Time evolution of the model variables is 
compared



Example – 3D Lorenz Model
 3D Lorenz model is given by

 200 time steps of sample time series is used to generate RBF 
model



Example – 3D Lorenz Model
(time derivatives given)



Example – 3D Lorenz Model
(Pair-wise time series given)



Example – 9D Lorenz Model

 500 time steps of sample time series used to generate RBF model.
 9D Lorenz model is given by



Example – 9D Lorenz Model
(time derivatives given)



Example – 9D Lorenz Model
(pair-wise time series given)



Example – KS Equation
 Governing equation 

 Low-dimensional form identical to Navier-Stokes equation
 Periodic boundary conditions
 Space: Fourier decomposition
 Time: Exponential time differencing with RK-4 scheme
 Initial condition



Example – KS Equation

 POD analysis is done on the solution
 75 POD modes used to construct dynamical 

system
 Each differential equation has 2925 terms
 2000 time steps of sample time series at interval 

of 1 is used
 Parameter estimation using least-squares leads 

to highly under-determined system of equations



KS Equation Solution



KS Equation (time derivatives given)



KS Equation (pair-wise time series)



KS Equation Solution



KS Equation (time derivatives given)



KS Equation Solution



KS Equation (pair-wise time series)



          QUESTIONS ….?


