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Introduction

Research motivation: Numerical solution of direct and inverse
problem of contaminant dispersion

% +V(uc) =V (Dc)+ S(x,t).

0 Need proper initial and boundary conditions

2 Need 3D velocity field

Research constraint: Sparse velocity data is available

Research objective: Develop methods to predict entire 3D velocity
fields from sparse data

2 Models that achieve this objective should be (at least)
Dynamically consistent
Robust to noise and outliers
Simple



Focus

Development of model that enables
approximation of velocity fields at past and
future instances in time based on velocity
information available at present time step

Development of sequential model that updates
previous estimates of velocity fields when new
information is provided



Outline

Proper orthogonal decomposition (POD)
Episodic POD (Ep-POD)

Properties of Ep-POD

Algorithm of model based on Ep-POD

Validation through examples
2 Flow around 2D cylinder at Re=100
2 9-D Lorenz model



‘ Proper Orthogonal Decomposition
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Ep-POD Model

A super-snapshot is defined as
Xp(T.s)=ulz,ty+5 (tyr —1,)), 0< s <1
Ep-POD decomposes the super-snapshot as

Xp i *-.J — Z?H [J'JJJ(I)E LI *-.}

If the episodic Coefficients are known at any
given episode, then the spatio-temporal
evolution of the velocity field can be
approximated within that episode



‘ Episodic Po

Super snapshot
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‘ Ep-POD Properties

= Evolution of spatio-temporal basis functions is consistent
with definition of Rempfer (1994)

i@, t) = Coi—1(t)Po; _1() + Qi)Yo ()




Ep-POD Properties

Formulation directly leads to a vector-autoregressive
(VAR) model for POD coefficients.

n=N—1

{-;Fc{fp—l—T} — Z Z Ckm{-‘*"nj 'L;-m{fp + Sn (?Lp—I—T — fp}}

m=1 n=1

Models derived from Ep-POD rely on the principle of
overlapping snapshots.

a

If there are N snapshots within an episode then there are (N-1)
snapshots within the episode that overlap with the previous episode and
next episode.

For any given episode ‘p’, there exist (2N-1) episodes that share
snapshots with the episode p’.



Algorithm for Ep-POD based Model

Sparse velocity information from sensors is given

Use Reduced Sensor Analysis (RSA)
to compute the POD coefficients

|

Use Ep-POD model to compute
the episodic coefficients.

|

Using Episodic POD construct
velocity fields at past, present
and future time steps.




Algorithms for Ep-POD based Model

Past Future
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Bottom-Up Model

POD coefficients known at time ‘t’




Ep-POD based Model

Bottom-up and top-down models are linear
models given by

N
Z (5” — Z ’R”{u}) ni(p) = ZRih{Hl}fii{Hl}
n—=2 k

)

Matrices in model come from principle of
overlapping of the spatio-temporal
eigenfunctions



Sequential Model

If information at multiple instances within an
episode is available, then Ep-POD based
model can be modified to get a sequential
model
W™ () = W 05V () + Rirlsa) €0 (s).
W = WY LR (),

1,,1;593 = 5 — Z Rii(sn).

n=1

0),
-;;__E; }UJ} = U



Sequential Model : Long-Term
Prediction

Model can also be used for long-term
prediction.

Information between non overlapping
episodes is passed through “bridging”.

Time
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Examples

Flow around 2D cylinder.

2 Re =100, shedding frequency = 10 Hz
1 Snapshots available every 0.0001 seconds
2 Snapshots/Episode = 100

9D chaotic Lorenz model

2 Snapshots available every 0.5 seconds
2 Snapshots/Episode = 200



Example — 2D Cylinder

Example is used to test accuracy of long-term
prediction

POD coefficients are predicted for 5000
shedding cycles

Initial condition at some random time is
provided

Results compared with solution obtained from
quadratic system of ODEs (Galerkin model)



Example
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Example — 2D Cylinder (Ep-POD
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‘ Example 2 — 9D Lorenz Model

1 = —ab1Cy — C2C4+1’:-4C4 + b3C3Cs — aby(CA
Cy=—0Cy+ C1Cy — C2Cs + C4Cs — 5 Co/2
C; = —0bC; + C,Cy — byCy? — bh3C1Cs + obrCy
Cy=—0Cy— C2C3 — C2Cs 4+ Cy4Cs + 0 Co/2
Cs = —obsCs 4+ C2%/2 — C42)2
Cs = —bsCs + C2Co — C4Co
Cr=—bC7—rC; +2Cs5Cg — C4Co
Cg = —bCg +rC3; — 2C5C+ + C>Co
Co=—Cog—rCy~+rCy—2C,Cs + 2C4Cs 4+ C4C7 — C>Cs.

by =4 L A S S
1 4 2a- 2 (l + (12) 1 + a?
; a* / 8a* ; 4
g = g TR P F— .
4 1 + a? : 1 + 2a° ° 1 + 2a?

a =z o =05 r=14.22




Example 2 — 9D Lorenz Model

Episodic length = 200 time steps

Example used to test sequential model and its
robustness to outliers

Two tests are performed:
0 Ep-POD model is provided with coefficients every 40 time steps

2 Ep-POD model is provided with noisy coefficients every 20 time
steps. Noise is white noise with standard deviation of 0.2

Evolution of the coefficients is tracked for 1200 time
steps



Example 2 — 9D Lorenz Model (no
noise)




Example 2 — 9D Lorenz (with noise)




REMARKS

Ep-POD sequential model is found to be
robust and is dynamically consistent

Linear formulation makes implementation fast

Models work especially well for strongly
periodic cases

Ep-POD model behaves similar to a linear
Kalman filter



REMARKS

Currently, episodic length is set equal to the
dominant frequency in the flow

Effect of episodic length needs to be studied

Selection of episodic length needs to
addressed more rigorously

Model has been tested for very high
dimensional models



Predicting Complex Flows
Part 11:
Radial Basis Function Approach to
Modeling Dynamical Systems




Introduction

Consider a time series given by

Celt;), i=1,2,...M, k=1,2..... N

The time series follows from a dynamical
system given by

{j}: ZZ ApijGiGj + ZPAM

i=1 =1



Introduction

We are interested in the modeling the
evolution of ¢.(¢)
Given:

0 Sample time series
2 Time derivatives or pair-wise time series

The model is derived from the concept of
surface approximation using radial basis
functions



‘ RBF-Based Model

= RBF model takes the form of

N M
0@ =3 R+ 3 Ay B(][e! = T[l)
k=1 i=1

“ where
di(x) = e~ IP-Cil3) - Gaussian Function,
bi(x) = \/ 14 € ||z — ¢;||3, Multi-quadric function,
®,(x) : , Inverse multi-quadric function.

VI flr—g[B




RBF-Based Model

The coefficients in the RBF model are solved via a
system of linear equations

AB| | g
cD||R h




‘ RBF-Based Model

A=A =0(||C(t) = C(t))|2), i =1,2..M, j=1,2,..M,
B = Bim = (ulti), i=1,2,...,M, m=12,..N,
g=0.C(t;)), i=1,2,..... M.
Cro = Quok(ty). 1 =1,2,..,M, k=1,2,...N
P
Dir = Gt agr(ty), r=1,2,..N, k=1,2,..N,
r

hes = Y ge(tp)ge(ty), k=1,2,.. M, s=1,2,....M
P

Oy = O(|[C(t)]]a).




RBF-Based Model

If continuous derivatives are given, then
_ di.
e = (%)

If pair-wise time series is given, then

9s(C(t:)) = G(ti 4 0t)



e

INPUT : Gi(t;), OUTPUT ((;A)
t=t

at

Time derivatives given :

Pair-wise time series given : NPUT ) OUTRUT e

\4



Examples

Three examples are considered
2 3D Lorenz model

2 9D Lorenz model

0 Kuramoto-Sivashinsky model

RBF models are generated for the continuous
and discrete cases using sample time series

Time evolution of the model variables is
compared



Example — 3D Lorenz Model

3D Lorenz model is given by

—— = 0o(xry — 1),
dt
dro N
— = —.X&'gp — X1y ¥y,
dt
das :
— = I1aI9 — I3,
dt

o= 10, o = 28, § = 8/3.

200 time steps of sample time series is used to generate RBF
model



‘ Example — 3D Lorenz Model
(time derivatives given)
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‘ Example — 3D Lorenz Model
(Pair-wise time series given)
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‘ Example — 9D Lorenz Model

= 500 time steps of sample time series used to generate RBF model.

" 9D Lorenz model is given by

C1 = —0bCy — C2Cs + bsCs* + b3C3Cs — b2 Cr
Cy = —0Cy+ C1Cy — C,Cs + C4Cs — 6 Co/2

Cs = —0b,C3 4+ C,Cy — bsCy* — b3C1Cs 4+ b, Cs
Cy = —0Cy — C2C3 — C2Cs + C4Cs + 0 Co/2

Cs = —obsCs + C5% )2 — C42)2

Cs = —bsCs + C2Co — C4Co

C; = —bCy — rCy + 2C5Cs — C4Co

Cs = —bCs + rC3 — 2CsC7 + C,Co

Cg = —Cg - .-"Cg + ."C4 - 2C2C6 + 2C4C6 + C4C7 - CECS‘

1+ a? 1+ 2a? 1 —a?
by =4t o 1T by =2— L
1+ 2a* 2 (l +a2) 1 +a?
. a* ; 8a* ) 4
Y4 = g = — 26— .
e : 1 4 242 ST 11242




‘ Example — 9D Lorenz Model

(time derivatives given)
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‘ Example — 9D Lorenz Model
pair-wise time series given)
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Example — KS Equation

Governing equation

ou ou D% u o
= —uU — —

ot or Oxr2 Or?

Low-dimensional form identical to Navier-Stokes equation
Periodic boundary conditions

Space: Fourier decomposition
Time: Exponential time differencing with RK-4 scheme
Initial condition

€X

u(r,t=0) = cos(g)(l + Sill(%))



Example — KS Equation

POD analysis is done on the solution

75 POD modes used to construct dynamical
system

Each differential equation has 2925 terms

2000 time steps of sample time series at interval
of 1 is used

Parameter estimation using least-squares leads
to highly under-determined system of equations



‘ KS Equation Solution




KS Equation (time derivatives given)
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KS Equation (pair-wise time series)
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‘ KS Eauation Solution




‘ KS Eqguation (time derivatives given)

APPROXIMATE SOLUTION

TIME -—>




‘ KS Eauation Solution




KS Equation (pair-wise time series)

100




QUESTIONS ....?




