Model reduction of large-scale systems

An overview and some recent results

Thanos Antoulas

Rice University

email: aca@rice.edu
URL: www.ece.rice.edu/ªca

POD Workshop, Bordeaux, 31 March - 2 April 2008

Collaborators

- Dan Sorensen, CAAM Rice
- Andrew Mayo, ECE Rice
- Eduardo Gildin, UT Austin
- Mehboob Alam, ECE Rice
- Kai Sun, CAAM Rice
- Roxana Ionutiu, ECE Rice
- Sanda Lefteriu, ECE Rice
- Serkan Gugercin, Virginia Tech
- Chris Beattie, Virginia Tech
- Matthias Heinkenschloss, ECE Rice
- Cosmin Ionita, ECE Rice

Contents

(1) Introduction and problem statement
(2) Motivating Examples
(3) Overview of approximation methods SVD - Krylov - Krylov/SVD

- Some recent results
- Passivity preserving model reduction
- Optimal \mathcal{H}_{2} model reduction
- Model reduction from data
(5) Future challenges: Nanoelectronics - References

Contents

(1) Introduction and problem statement
(2) Motivating Examples
(3) Overview of approximation methods
SVD - Krylov - Krylov/SVD
(9) Some recent results

- Passivity preserving model reduction
- Optimal \mathcal{H}_{2} model reduction
- Model reduction from data
(5) Future challenges: Nanoelectronics - References

Contents

(1) Introduction and problem statement
(2) Motivating Examples
(3) Overview of approximation methods
SVD - Krylov - Krylov/SVD
(4) Some recent results

- Passivity preserving model reduction
- Optimal \mathcal{H}_{2} model reduction
- Model reduction from data
(5) Future challenges: Nanoelectronics - References

Contents

(1) Introduction and problem statement
(2) Motivating Examples
(3) Overview of approximation methods
SVD - Krylov - Krylov/SVD
(4) Some recent results

- Passivity preserving model reduction
- Optimal \mathcal{H}_{2} model reduction
- Model reduction from data
(5) Future challenges: Nanoelectronics - References

Part I

Introduction and model reduction problem

The big picture

The big picture

Dynamical systems

We consider explicit state equations

$$
\Sigma: \quad \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{y}(t)=\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t))
$$

with state $\mathbf{x}(\cdot)$ of dimension $n \gg m, p$.

Problem statement

Given: dynamical system

$$
\Sigma=(\mathbf{f}, \mathbf{h}) \text { with: } \mathbf{u}(t) \in \mathbb{R}^{m}, \mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{y}(t) \in \mathbb{R}^{p}
$$

Problem: Approximate Σ with:

$$
\hat{\Sigma}=(\hat{\mathbf{f}}, \hat{\mathbf{h}}) \text { with }: \mathbf{u}(t) \in \mathbb{R}^{m}, \hat{\mathbf{x}}(t) \in \mathbb{R}^{k}, \hat{\mathbf{y}}(t) \in \mathbb{R}^{p}, k \ll n:
$$

(1) Approximation error small - global error bound
(2) Preservation of stability/passivity
(3) Procedure must be computationally efficient

Approximation by projection

Unifying feature of approximation methods: projections.

Let $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times k}$, such that $\mathbf{W}^{*} \mathbf{V}=\mathbf{I}_{k} \Rightarrow \Pi=\mathbf{V W}^{*}$ is a projection. Define $\hat{\mathbf{x}}=\mathbf{W}^{*} \mathbf{x}$. Then

$$
\hat{\Sigma}:\left\{\begin{aligned}
\frac{d}{d t} \hat{\mathbf{x}}(t) & =\mathbf{W}^{*} \mathbf{f}(\mathbf{V} \hat{\mathbf{x}}(t), \mathbf{u}(t)) \\
\mathbf{y}(t) & =\mathbf{h}(\mathbf{V} \hat{\mathbf{x}}(t), \mathbf{u}(t))
\end{aligned}\right.
$$

Thus $\hat{\Sigma}$ is "good" approximation of Σ, if $\mathbf{x}-\Pi \mathbf{x}$ is "small".

Special case: linear dynamical systems

Special case: linear dynamical systems

$$
\begin{aligned}
& \Sigma: \mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t), \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t) \\
& \Sigma=\left(\begin{array}{c|c}
\mathbf{E}, \mathbf{A} & \mathbf{B} \\
\hline \mathbf{C} & \mathbf{D}
\end{array}\right)
\end{aligned}
$$

Problem: Approximate Σ by projection: $\Pi=\mathrm{VW}^{*}$

$$
\hat{\Sigma}=\left(\begin{array}{c|c}
\hat{\mathbf{E}}, \hat{\mathbf{A}} & \hat{\mathbf{B}} \\
\hline \hat{\mathbf{C}} & \hat{\mathbf{D}}
\end{array}\right)=\left(\begin{array}{c|c}
\mathbf{W}^{*} \mathbf{E V}, \mathbf{W}^{*} \mathbf{A} \mathbf{V} & \mathbf{W}^{*} \mathbf{B} \\
\hline \mathbf{C V} & \mathbf{D}
\end{array}\right), k \ll n
$$

Special case: linear dynamical systems

$\Sigma: \mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t), \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)$
$\Sigma=\left(\begin{array}{c|c}\mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D}\end{array}\right)$
Problem: Approximate Σ by projection: $\Pi=\mathrm{VW}^{*}=$

$$
\hat{\Sigma}=\left(\begin{array}{c|c}
\hat{\mathbf{E}}, \hat{\mathbf{A}} & \hat{\mathbf{B}} \\
\hline \hat{\mathbf{C}} & \hat{\mathbf{D}}
\end{array}\right)=\left(\begin{array}{c|c}
\mathbf{W}^{*} \mathbf{E V}, \mathbf{W}^{*} \mathbf{A} \mathbf{V} & \mathbf{W}^{*} \mathbf{B} \\
\hline \mathbf{C V} & \mathbf{D}
\end{array}\right), k \ll n
$$

c

Special case: linear dynamical systems

$$
\begin{aligned}
& \Sigma: \mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t), \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t) \\
& \Sigma=\left(\begin{array}{c|c}
\mathbf{E}, \mathbf{A} & \mathbf{B} \\
\hline \mathbf{C} & \mathbf{D}
\end{array}\right)
\end{aligned}
$$

Problem: Approximate Σ by projection: $\Pi=\mathrm{VW}^{*}$

$$
\hat{\Sigma}=\left(\begin{array}{c|c}
\hat{\mathbf{E}}, \hat{\mathbf{A}} & \hat{\mathbf{B}} \\
\hline \hat{\mathbf{C}} & \hat{\mathbf{D}}
\end{array}\right)=\left(\begin{array}{c|c}
\mathbf{W}^{*} \mathbf{E} \mathbf{V}, \mathbf{W}^{*} \mathbf{A} \mathbf{V} & \mathbf{W}^{*} \mathbf{B} \\
\hline \mathbf{C V} & \mathbf{D}
\end{array}\right), k \ll n
$$

Norms:

- \mathcal{H}_{∞}-norm: worst output error $\|\mathbf{y}(t)-\hat{\mathbf{y}}(t)\|$ for $\|\mathbf{u}(t)\|=1$.
- \mathcal{H}_{2}-norm: $\|\mathbf{h}(t)-\hat{\mathbf{h}}(t)\|$

Part II

Motivating examples

Motivating Examples: Simulation/Control

1. Passive devices	\bullet VLSI circuits \bullet Thermal issues \bullet Power delivery networks
2. Data assimilation	\bullet North sea forecast \bullet Air quality forecast
3. Molecular systems	\bullet MD simulations \bullet Heat capacity
4. CVD reactor	\bullet Bifurcations
5. Mechanical systems:	\bullet Windscreen vibrations \bullet Buildings
6. Optimal cooling	\bullet Steel profile
7. MEMS: Micro Electro-	
-Mechanical Systems	\bullet Elf sensor
8. Nano-Electronics	\bullet Plasmonics

Passive devices: VLSI circuits

1960's: IC	1971: Intel 4004	2001: Intel Pentium IV
	10μ details 2300 components 64 KHz speed	0.18μ details 42M components 2 GHz speed 2km interconnect 7 layers

Passive devices: VLSI circuits

Conclusion: Simulations are required to verify that internal electromagnetic fields do not significantly delay or distort circuit signals. Therefore interconnections must be modeled.
\Rightarrow Electromagnetic modeling of packages and interconnects \Rightarrow resulting models very complex: using PEEC methods (discretization of Maxwell's equations): $n \approx 10^{5} \ldots 10^{6} \Rightarrow$ SPICE: inadequate

- Source: van der Meijs (Delft)

Passive devices: VLSI circuits

65nm technology: gate delay <interconnect delay!

Conclusion: Simulations are required to verify that internal electromagnetic fields do not significantly delay or distort circuit signals. Therefore interconnections must be modeled.
\Rightarrow Electromagnetic modeling of packages and interconnects \Rightarrow resulting models very complex: using PEEC methods (discretization of Maxwell's equations): $n \approx 10^{5} \cdots 10^{6} \Rightarrow$ SPICE: inadequate

- Source: van der Meijs (Delft)

Power delivery network for VLSI chips

Mechanical systems: cars

Car windscreen simulation subject to acceleration load.

Problem: compute noise at points away from the window. PDE: describes deformation of a structure of a specific material; FE discretization: 7564 nodes (3 layers of 60 by 30 elements). Material: glass with Young modulus $7 \cdot 10^{10} \mathrm{~N} / \mathrm{m}^{2}$; density $2490 \mathrm{~kg} / \mathrm{m}^{3}$; Poisson ratio $0.23 \Rightarrow$ coefficients of FE model determined experimentally. The discretized problem has dimension: 22,692.

Notice: this problem yields 2nd order equations:
$\mathbf{M} \ddot{\mathbf{x}}(t)+\mathbf{C} \dot{\mathbf{x}}(t)+\mathbf{K} \mathbf{x}(t)=\mathbf{f}(t)$.

- Source: Meerbergen (Free Field Technologies)

Mechanical Systems: Buildings

Earthquake prevention

Building	Height	Control mechanism	Damping frequency Damping mass
CN Tower, Toronto	533 m	Passive tuned mass damper	
Hancock building, Boston	244 m	Two passive tuned dampers	$0.14 \mathrm{~Hz}, 2 \times 300 \mathrm{t}$
Sydney tower	305 m	Passive tuned pendulum	$0.1,0.5 \mathrm{z}, 220 \mathrm{t}$
Rokko Island P\&G, Kobe	117 m	Passive tuned pendulum	$0.33-0.62 \mathrm{~Hz}, 270 \mathrm{t}$
Yokohama Landmark tower	296 m	Active tuned mass dampers (2)	$0.185 \mathrm{~Hz}, 340 \mathrm{t}$
Shinjuku Park Tower	296 m	Active tuned mass dampers (3)	330 t
TYG Building, Atsugi	159 m	Tuned liquid dampers (720)	$0.53 \mathrm{~Hz}, 18.2 \mathrm{t}$

- Source: S. Williams

MEMS: Elk sensor

- Source: Laur (Bremen)

Part III

Overview of approximation methods

Krylov

- Pealization
- Interpolation
- Lanczos
- Arnoldi

> Nonlinear systems \quad Linear systems
> - POD methods
> - Empirical Gramians

Nonlinear systems	Linear systems
- POD methods	- Balanced truncation
- Empirical Gramians	• Hankel approximation

Krylov/SVD Methods

Approximation methods: Overview

Krylov

- Realization
- Interpolation
- Lanczos
- Arnoldi

Nonlinear systems	Linear systems
\bullet POD methods	\bullet Balanced truncation
- Empirical Gramians	\bullet Hankel approximation

Krylov/SVD Methods

Approximation methods: Overview

Krylov

- Realization
- Interpolation
- Lanczos
- Arnoldi

SVD

Nonlinear systems	Linear systems
- POD methods	• Balanced truncation
- Empirical Gramians	• Hankel approximation

Krylov/SVD Methods

Approximation methods: Overview

SVD Approximation methods

A prototype approximation problem - the SVD
(Singular Value Decomposition): $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{*}$.

Singular values provide trade-off between accuracy and complexity

SVD Approximation methods

A prototype approximation problem - the SVD
(Singular Value Decomposition): $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{*}$.

Supernova
Singular values of Clown and Supernova

Supernova: rank 6 approximation

Supernova: original picture

Supernova: rank 20 approximation

Clown

Clown: original picture

Clown: rank 12 approximation

Singular values provide trade-off between accuracy and complexity

POD: Proper Orthogonal Decomposition

Consider: $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{y}(t)=\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t))$. Snapshots of the state:

$$
\mathcal{X}=\left[\mathbf{x}\left(t_{1}\right) \quad \mathbf{x}\left(t_{2}\right) \cdots \mathbf{x}\left(t_{N}\right)\right] \in \mathbb{R}^{n \times N}
$$

SVD: $\mathcal{X}=\mathbf{U} \Sigma V^{*} \approx \mathbf{U}_{k} \Sigma_{k} \mathbf{V}_{k}^{*}, \quad k \ll n$. Approximate the state:

$$
\hat{\mathbf{x}}(t)=\mathbf{U}_{k}^{*} \mathbf{x}(t) \Rightarrow \mathbf{x}(t) \approx \mathbf{U}_{k} \hat{\mathbf{x}}(t), \quad \hat{\mathbf{x}}(t) \in \mathbb{R}^{k}
$$

Project state and output equations. Reduced order system:

$$
\dot{\hat{x}}(t)=\mathbf{U}_{k} \mathbf{f}\left(\mathbf{U}_{k} \hat{\mathbf{x}}(t), \mathbf{u}(t)\right), \quad \mathbf{y}(t)=\mathbf{h}\left(\mathbf{U}_{k} \hat{\mathbf{x}}(t), \mathbf{u}(t)\right)
$$

$\Rightarrow \hat{\mathbf{x}}(t)$ evolves in a low-dimensional space.

Issues with POD:
 (a) Choice of snapshots, (b) singular values not I/O invariants.

POD: Proper Orthogonal Decomposition

Consider: $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{y}(t)=\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t))$.
Snapshots of the state:

$$
\mathcal{X}=\left[\mathbf{x}\left(t_{1}\right) \quad \mathbf{x}\left(t_{2}\right) \cdots \mathbf{x}\left(t_{N}\right)\right] \in \mathbb{R}^{n \times N}
$$

SVD: $\mathcal{X}=\mathbf{U} \Sigma \mathbf{V}^{*} \approx \mathbf{U}_{k} \Sigma_{k} \mathbf{V}_{k}^{*}, k \ll n$. Approximate the state:

$$
\hat{\mathbf{x}}(t)=\mathbf{U}_{k}^{*} \mathbf{x}(t) \Rightarrow \mathbf{x}(t) \approx \mathbf{U}_{k} \hat{\mathbf{x}}(t), \quad \hat{\mathbf{x}}(t) \in \mathbb{R}^{k}
$$

Project state and output equations. Reduced order system:

$$
\dot{\hat{\mathbf{x}}}(t)=\mathbf{U}_{k}^{*} \mathbf{f}\left(\mathbf{U}_{k} \hat{\mathbf{x}}(t), \mathbf{u}(t)\right), \quad \mathbf{y}(t)=\mathbf{h}\left(\mathbf{U}_{k} \hat{\mathbf{x}}(t), \mathbf{u}(t)\right)
$$

$\Rightarrow \hat{\mathbf{x}}(t)$ evolves in a low-dimensional space.
Issues with POD:
(a) Choice of snapshots, (b) singular values not I/O invariants.

POD: Proper Orthogonal Decomposition

Consider: $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{y}(t)=\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t))$.
Snapshots of the state:

$$
\mathcal{X}=\left[\mathbf{x}\left(t_{1}\right) \quad \mathbf{x}\left(t_{2}\right) \cdots \mathbf{x}\left(t_{N}\right)\right] \in \mathbb{R}^{n \times N}
$$

SVD: $\mathcal{X}=\mathbf{U} \Sigma \mathbf{V}^{*} \approx \mathbf{U}_{k} \Sigma_{k} \mathbf{V}_{k}^{*}, k \ll n$. Approximate the state:

$$
\hat{\mathbf{x}}(t)=\mathbf{U}_{k}^{*} \mathbf{x}(t) \Rightarrow \mathbf{x}(t) \approx \mathbf{U}_{k} \hat{\mathbf{x}}(t), \quad \hat{\mathbf{x}}(t) \in \mathbb{R}^{k}
$$

Project state and output equations. Reduced order system:

$$
\dot{\hat{\mathbf{x}}}(t)=\mathbf{U}_{k}^{*} \mathbf{f}\left(\mathbf{U}_{k} \hat{\mathbf{x}}(t), \mathbf{u}(t)\right), \quad \mathbf{y}(t)=\mathbf{h}\left(\mathbf{U}_{k} \hat{\mathbf{x}}(t), \mathbf{u}(t)\right)
$$

$\Rightarrow \hat{\mathbf{x}}(t)$ evolves in a low-dimensional space.
Issues with POD:
(a) Choice of snapshots, (b) singular values not I/O invariants.

SVD methods: balanced truncation

Trade-off between accuracy and complexity for linear dynamical systems is provided by the Hankel Singular Values. Define the gramians as solutions of the Lyapunov equations

$$
\left.\begin{array}{l}
\mathbf{A P}+\mathbf{P A}^{*}+\mathbf{B B}^{*}=\mathbf{0}, \mathbf{P}>\mathbf{0} \\
\mathbf{A}^{*} \mathbf{Q}+\mathbf{Q} \mathbf{A}+\mathbf{C}^{*} \mathbf{C}=\mathbf{0}, \quad \mathbf{Q}>\mathbf{0}
\end{array}\right\} \Rightarrow \sigma_{i}=\sqrt{\lambda_{i}(\mathbf{P Q})}
$$

σ_{i} : Hankel singular values of the system. There exists balanced basis where $\mathbf{P}=\mathbf{Q}=\mathbf{S}=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$. In this basis partition:

$$
\mathbf{A}=\left(\begin{array}{c|c}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\hline \mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right), \mathbf{B}=\binom{\mathbf{B}_{1}}{\hline \mathbf{B}_{2}}, \mathbf{C}=\left(\mathbf{C}_{1} \mid \mathbf{C}_{2}\right), \mathbf{S}=\left(\begin{array}{c|c}
\Sigma_{1} & 0 \\
\hline 0 & \Sigma_{2}
\end{array}\right) .
$$

The reduced system is obtained by balanced truncation $\left(\begin{array}{c|c}\mathbf{A}_{11} & B_{1} \\ \hline C_{1} & \end{array}\right)$, where Σ_{2} contains the small Hankel singular values.

Properties of balanced reduction

(1) Stability is preserved
(2) Global error bound:

$$
\sigma_{k+1} \leq\|\Sigma-\hat{\Sigma}\|_{\infty} \leq 2\left(\sigma_{k+1}+\cdots+\sigma_{n}\right)
$$

Drawbacks

- Dense computations, matrix factorizations and inversions \Rightarrow may be ill-conditioned
(2) Need whole transformed system in order to truncate \Rightarrow number of operations $\mathcal{O}\left(n^{3}\right)$
(8) Bottleneck: solution of two Lyapunov equations

Properties of balanced reduction

(1) Stability is preserved
(2) Global error bound:

$$
\sigma_{k+1} \leq\|\Sigma-\hat{\Sigma}\|_{\infty} \leq 2\left(\sigma_{k+1}+\cdots+\sigma_{n}\right)
$$

Drawbacks

(1) Dense computations, matrix factorizations and inversions \Rightarrow may be ill-conditioned
(2) Need whole transformed system in order to truncate \Rightarrow number of operations $\mathcal{O}\left(n^{3}\right)$
(3) Bottleneck: solution of two Lyapunov equations

Approximation methods: Krylov methods

Approximation methods: Krylov methods

Krylov

SVD

- Realization
- Interpolation
- Lanczos
- Arnoldi

Nonlinear systems	Linear systems
• POD methods	• Balanced truncation
• Empirical Gramians	• Hankel approximation

Krylov/SVD Methods

The basic Krylov iteration

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$, let $\mathbf{v}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$. At the $k^{\text {th }}$ step:

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k} \mathbf{H}_{k}+\mathbf{f}_{k} \mathbf{e}_{k}^{*} \quad \text { where }
$$

Computational complexity for k steps: $\mathcal{O}\left(n^{2} k\right)$; storage $\mathcal{O}(n k)$.
The Lanczos and the Arnoldi aldorithms result.
The Krylov iteration involves the subspace $\mathcal{R}_{k}=[\mathrm{b}, \mathrm{Ab}$

- Arnoldi iteration \Rightarrow arbitrary $\mathbf{A} \Rightarrow \mathbf{H}_{k}$ upper Hessenberg.
- Symmetric (one-sided) Lanczos iteration \Rightarrow symmetric $\mathbf{A}=\mathbf{A}$
$\Rightarrow H_{k}$ tridiagonal and symmetric.
- Two-sided Lanczos iteration with two starting vectors b, c
\Rightarrow arbitrary $\mathrm{A} \Rightarrow \mathrm{H}_{k}$ tridiagonal.

The basic Krylov iteration

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$, let $\mathbf{v}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$. At the $k^{\text {th }}$ step:

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k} \mathbf{H}_{k}+\mathbf{f}_{k} \mathbf{e}_{k}^{*} \quad \text { where }
$$

$$
\begin{aligned}
& \mathbf{e}_{k} \in \mathbb{R}^{k}: \text { canonical unit vector } \\
& \mathbf{V}_{k}=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{k}\right] \in \mathbb{R}^{k \times k}, \mathbf{V}_{v}^{*} \mathbf{V}_{k}=\mathbf{I}_{k} \\
& \mathbf{H}_{k}=\mathbf{V}_{k}^{*} \mathbf{A \mathbf { V } _ { k } \in \mathbb { R } ^ { k \times k }}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}_{k+1}=\frac{\mathbf{f}_{k}}{\left\|\boldsymbol{f}_{k}\right\|} \in \mathbb{R}^{n}
$$

Computational complexity for k steps: $\mathcal{O}\left(n^{2} k\right)$; storage $\mathcal{O}(n k)$. The Lanczos and the Arnoldi algorithms result.

The Krylov iteration involves the subsnace $\mathcal{R}_{k}=[\mathrm{b}, \mathrm{Ab}$

- Arnoldi iteration \Rightarrow arbitrary $\mathbf{A} \Rightarrow \boldsymbol{H}_{k}$ upper Hessenberg.
- Symmetric (one-sided) Lanczos iteration \Rightarrow symmetric $\mathbf{A}=\mathbf{A}$ $\Rightarrow \mathbf{H}_{k}$ tridiagonal and symmetric.
- Two-sided Lanczos iteration with two starting vectors b, c \Rightarrow arbitrary $\mathrm{A} \Rightarrow \mathrm{H}_{\mathrm{k}}$ tridiagonal.

The basic Krylov iteration

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$, let $\mathbf{v}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$. At the $k^{\text {th }}$ step:

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k} \mathbf{H}_{k}+\mathbf{f}_{k} \mathbf{e}_{k}^{*} \quad \text { where }
$$

$$
\begin{aligned}
& \mathbf{e}_{k} \in \mathbb{R}^{k} \text { : canonical unit vector } \\
& \mathbf{V}_{k}=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{k}\right] \in \mathbb{R}^{k \times k}, \mathbf{V}_{v}^{*} \mathbf{V}_{k}=\mathbf{I}_{k} \\
& \mathbf{H}_{k}=\mathbf{V}_{k}^{*} \mathbf{A} \mathbf{V}_{k} \in \mathbb{R}^{k \times k}
\end{aligned}
$$

Computational complexity for k steps: $\mathcal{O}\left(n^{2} k\right)$; storage $\mathcal{O}(n k)$. The Lanczos and the Arnoldi algorithms result.

$$
\text { The Krylov iteration involves the subspace } \mathcal{R}_{k}=[\mathbf{b}, \mathbf{A b} \text {, }
$$

- Arnoldi iteration \Rightarrow arbitrary $\mathbf{A} \Rightarrow \mathbf{H}_{k}$ upper Hessenberg
- Symmetric (one-sided) Lanczos iteration \Rightarrow symmetric $\mathbf{A}=\mathbf{A}$ \Rightarrow "H $_{k}$ tridiagonal and symmetric.
- Two-sided Lanczos iteration with two starting vectors b, c \Rightarrow arbitrary $\mathbf{A} \Rightarrow \boldsymbol{H}_{k}$ tridiagonal.

The basic Krylov iteration

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$, let $\mathbf{v}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$. At the $k^{\text {th }}$ step:

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k} \mathbf{H}_{k}+\mathbf{f}_{k} \mathbf{e}_{k}^{*} \quad \text { where }
$$

$$
\begin{aligned}
& \mathbf{e}_{k} \in \mathbb{R}^{k} \text { : canonical unit vector } \\
& \mathbf{V}_{k}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{k}\right] \in \mathbb{R}^{k \times k}, \mathbf{V}_{v}^{*} \mathbf{V}_{k}=\mathbf{I}_{k} \\
& \mathbf{H}_{k}=\mathbf{V}_{k}^{*} \mathbf{A V}_{k} \in \mathbb{R}^{k \times k}
\end{aligned}
$$

Computational complexity for k steps: $\mathcal{O}\left(n^{2} k\right)$; storage $\mathcal{O}(n k)$.
The Lanczos and the Arnoldi algorithms result.
The Krylov iteration involves the subspace $\mathcal{R}_{k}=\left[\mathbf{b}, \mathbf{A b}, \cdots, \mathbf{A}^{k-1} \mathbf{b}\right]$.

- Arnoldi iteration \Rightarrow arbitrary $\mathbf{A} \Rightarrow \mathbf{H}_{k}$ upper Hessenberg.
- Symmetric (one-sided) Lanczos iteration \Rightarrow symmetric $\mathbf{A}=\mathbf{A}^{*}$
$\Rightarrow \mathbf{H}_{k}$ tridiagonal and symmetric.
- Two-sided Lanczos iteration with two starting vectors b, c
\Rightarrow arbitrary $A \Rightarrow \mathbf{H}_{k}$ tridiagonal.

Three uses of the Krylov iteration

(1) Iterative solution of $\mathbf{A x}=\mathbf{b}$: approximate the solution \mathbf{x} iteratively.
(2) Iterative approximation of the eigenvalues of \mathbf{A}. In this case \mathbf{b} is not fixed apriori. The eigenvalues of the projected \mathbf{H}_{k} approximate the dominant eigenvalues of A .
(3) Approximation of linear systems by moment matriching.

Item (3) is of interest in the present context.

Three uses of the Krylov iteration

(1) Iterative solution of $\mathbf{A x}=\mathbf{b}$: approximate the solution \mathbf{x} iteratively.
(2) Iterative approximation of the eigenvalues of \mathbf{A}. In this case \mathbf{b} is not fixed apriori. The eigenvalues of the projected \mathbf{H}_{k} approximate the dominant eigenvalues of \mathbf{A}.
(3) Approximation of linear systems by moment matriching.

Item (3) is of interest in the present context.

Three uses of the Krylov iteration

(1) Iterative solution of $\mathbf{A x}=\mathbf{b}$: approximate the solution \mathbf{x} iteratively.
(2) Iterative approximation of the eigenvalues of \mathbf{A}. In this case \mathbf{b} is not fixed apriori. The eigenvalues of the projected \mathbf{H}_{k} approximate the dominant eigenvalues of \mathbf{A}.
(3) Approximation of linear systems by moment matriching.
\square
Item (3) is of interest in the present context.

Three uses of the Krylov iteration

(1) Iterative solution of $\mathbf{A x}=\mathbf{b}$: approximate the solution \mathbf{x} iteratively.
(2) Iterative approximation of the eigenvalues of \mathbf{A}. In this case \mathbf{b} is not fixed apriori. The eigenvalues of the projected \mathbf{H}_{k} approximate the dominant eigenvalues of \mathbf{A}.
(3) Approximation of linear systems by moment matriching.
\Rightarrow Item (3) is of interest in the present context.

Approximation by moment matching

Given $\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t), \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)$, expand transfer function around s_{0} :

$$
\mathbf{G}(\boldsymbol{s})=\eta_{0}+\eta_{1}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)+\eta_{2}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)^{2}+\eta_{3}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)^{3}+\cdots
$$

Moments at $s_{0}: \eta_{j}$.

Find $\hat{\mathbf{E}} \hat{\mathbf{x}}(t)=\hat{\mathbf{A}} \hat{\mathbf{x}}(t)+\hat{\mathbf{B}} \mathbf{u}(t), \mathbf{y}(t)=\hat{\mathbf{C}} \hat{\mathbf{x}}(t)+\hat{\mathbf{D}} \mathbf{u}(t)$, with

such that for appropriate s_{0} and ℓ :

Approximation by moment matching

Given $\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t), \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)$, expand transfer function around s_{0} :

$$
\mathbf{G}(\boldsymbol{s})=\eta_{0}+\eta_{1}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)+\eta_{2}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)^{2}+\eta_{3}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)^{3}+\cdots
$$

Moments at $s_{0}: \eta_{j}$.
Find $\hat{\mathbf{E}} \dot{\hat{\mathbf{x}}}(t)=\hat{\mathbf{A}} \hat{\mathbf{x}}(t)+\hat{\mathbf{B}} \mathbf{u}(t), \mathbf{y}(t)=\hat{\mathbf{C}} \hat{\mathbf{x}}(t)+\hat{\mathbf{D}} \mathbf{u}(t)$, with

$$
\hat{\mathbf{G}}(\boldsymbol{s})=\hat{\eta}_{0}+\hat{\eta}_{1}\left(s-s_{0}\right)+\hat{\eta}_{2}\left(s-s_{0}\right)^{2}+\hat{\eta}_{3}\left(s-s_{0}\right)^{3}+\cdots
$$

such that for appropriate s_{0} and ℓ :

Approximation by moment matching

Given $\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t), \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)$, expand transfer function around s_{0} :

$$
\mathbf{G}(\boldsymbol{s})=\eta_{0}+\eta_{1}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)+\eta_{2}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)^{2}+\eta_{3}\left(\boldsymbol{s}-\boldsymbol{s}_{0}\right)^{3}+\cdots
$$

Moments at $s_{0}: \eta_{j}$.
Find $\hat{\mathbf{E}} \dot{\hat{\mathbf{x}}}(t)=\hat{\mathbf{A}} \hat{\mathbf{x}}(t)+\hat{\mathbf{B}} \mathbf{u}(t), \mathbf{y}(t)=\hat{\mathbf{C}} \hat{\mathbf{x}}(t)+\hat{\mathbf{D}} \mathbf{u}(t)$, with

$$
\hat{\mathbf{G}}(s)=\hat{\eta}_{0}+\hat{\eta}_{1}\left(s-s_{0}\right)+\hat{\eta}_{2}\left(s-s_{0}\right)^{2}+\hat{\eta}_{3}\left(s-s_{0}\right)^{3}+\cdots
$$

such that for appropriate s_{0} and ℓ :

$$
\eta_{j}=\hat{\eta}_{j}, \quad j=1,2, \cdots, \ell
$$

Projectors for Krylov and rational Krylov methods

Given:

$\Sigma=\left(\begin{array}{c|c}\mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D}\end{array}\right)$ by projection: $\Pi=\mathrm{VW}^{*}, \Pi^{2}=\Pi$ obtain
$\hat{\Sigma}=\left(\begin{array}{c|c}\hat{\mathbf{E}}, \hat{\mathbf{A}} & \hat{\mathbf{B}} \\ \hline \hat{\mathbf{C}} & \hat{\mathbf{D}}\end{array}\right)=\left(\begin{array}{c|c}\mathbf{W}^{*} \mathbf{E V}, \mathbf{W}^{*} \mathbf{A V} & \mathbf{W}^{*} \mathbf{B} \\ \hline \mathbf{C V} & \mathbf{D}\end{array}\right)$, where $k<n$.

then the Markov parameters match:

Rational Krylov: let

then the moments of G match those of G at
$\mathrm{G}\left(\lambda_{\mathrm{i}}\right)=\mathrm{D}+\mathrm{C}\left(\lambda_{\mathrm{i}} \mathrm{E}-\mathrm{A}\right)^{-1} \mathrm{~B}=\hat{\mathrm{D}}+\hat{\mathrm{C}}\left(\lambda_{\mathrm{i}} \hat{E}-\hat{A}\right)^{-1} \hat{B}=\hat{G}\left(\lambda_{\mathrm{i}}\right)$

Projectors for Krylov and rational Krylov methods

Given:

$\Sigma=\left(\begin{array}{c|c}\mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D}\end{array}\right)$ by projection: $\Pi=\mathrm{VW}^{*}, \Pi^{2}=\Pi$ obtain
$\hat{\Sigma}=\left(\begin{array}{c|c}\hat{\mathbf{E}}, \hat{\mathbf{A}} & \hat{\mathbf{B}} \\ \hline \hat{\mathbf{C}} & \hat{\mathbf{D}}\end{array}\right)=\left(\begin{array}{c|c}\mathbf{W}^{*} \mathbf{E V}, \mathbf{W}^{*} \mathbf{A V} & \mathbf{W}^{*} \mathbf{B} \\ \hline \mathbf{C V} & \mathbf{D}\end{array}\right)$, where $k<n$.

$$
\begin{aligned}
& \text { Krylov (Lanczos, Arnoldi): let } \mathbf{E}=\mathbf{I} \text { and } \\
& \mathbf{V}=\left[\mathbf{B}, \mathbf{A B}, \cdots, \mathbf{A}^{k-1} \mathbf{B}\right] \in \mathbb{R}^{n \times k} \\
& \overline{\mathbf{W}}^{*}=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots \\
\mathbf{C A}^{k-1}
\end{array}\right] \in \mathbb{R}^{k \times n} \\
& \Rightarrow \mathbf{W}^{*}=\left(\overline{\mathbf{W}}^{*} \mathbf{V}\right)^{-1} \overline{\mathbf{W}}^{*}
\end{aligned}
$$

then the Markov parameters match:

$$
\mathbf{C A}^{\mathrm{i}} \mathbf{B}=\hat{\mathbf{C}} \hat{A}^{\mathrm{i}} \hat{\mathbf{B}}
$$

Rational Krylov: let

then the moments of G match those of G at
$\mathrm{G}\left(\lambda_{i}\right)=\mathrm{D}+\mathrm{C}\left(\lambda_{\mathrm{i}} \mathrm{E}-\mathrm{A}\right)^{-1} \mathrm{~B}=\hat{\mathrm{D}}+\hat{\mathrm{C}}\left(\lambda_{1} \hat{E}-\hat{A}\right)^{-1} \hat{B}=\hat{G}\left(\lambda_{i}\right)$

Projectors for Krylov and rational Krylov methods

Given:

$\Sigma=\left(\begin{array}{c|c}\mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D}\end{array}\right)$ by projection: $\Pi=\mathrm{VW}^{*}, \Pi^{2}=\Pi$ obtain
$\hat{\Sigma}=\left(\begin{array}{c|c}\hat{\mathbf{E}}, \hat{\mathbf{A}} & \hat{\mathbf{B}} \\ \hline \hat{\mathbf{C}} & \hat{\mathbf{D}}\end{array}\right)=\left(\begin{array}{c|c}\mathbf{W}^{*} \mathbf{E V}, \mathbf{W}^{*} \mathbf{A V} & \mathbf{W}^{*} \mathbf{B} \\ \hline \mathbf{C V} & \mathbf{D}\end{array}\right)$, where $k<n$.

Krylov (Lanczos, Arnoldi): let E = I and

$$
\mathbf{V}=\left[\mathbf{B}, \mathbf{A B}, \cdots, \mathbf{A}^{k-1} \mathbf{B}\right] \in \mathbb{R}^{n \times k}
$$

$$
\overline{\mathbf{w}}^{*}=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots \\
\mathbf{C A}^{k-1}
\end{array}\right] \in \mathbb{R}^{k \times n}
$$

$$
\Rightarrow \mathbf{W}^{*}=\left(\overline{\mathbf{w}}^{*} \mathbf{V}\right)^{-1} \overline{\mathbf{w}}^{*}
$$

then the Markov parameters match:

$$
C A^{i} B=\hat{C} \hat{A}^{i} \hat{B}
$$

Rational Krylov: let

$$
\begin{aligned}
& \mathbf{V}=\left[\left(\lambda_{1} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{B} \cdots\left(\lambda_{k} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{B}\right] \in \mathbb{R}^{n \times k} \\
& \overline{\mathbf{W}}^{*}=\left[\begin{array}{c}
\mathbf{C}\left(\lambda_{k+1} \mathbf{E}-\mathbf{A}\right)^{-1} \\
\mathbf{C}\left(\lambda_{k+2} \mathbf{E}-\mathbf{A}\right)^{-1} \\
\vdots \\
\mathbf{C}\left(\lambda_{2 k} \mathbf{E}-\mathbf{A}\right)^{-1}
\end{array}\right] \in \mathbb{R}^{k \times n} \\
& \Rightarrow \mathbf{W}^{*}=\left(\overline{\mathbf{W}}^{*} \mathbf{V}\right)^{-1} \overline{\mathbf{W}}^{*}
\end{aligned}
$$

then the moments of $\hat{\mathbf{G}}$ match those of \mathbf{G} at λ_{i} :

$$
\mathbf{G}\left(\lambda_{\mathbf{i}}\right)=\mathbf{D}+\mathbf{C}\left(\lambda_{\mathbf{i}} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{B}=\hat{\mathbf{D}}+\hat{\mathbf{C}}\left(\lambda_{\mathbf{i}} \hat{\mathbf{E}}-\hat{\mathbf{A}}\right)^{-1} \hat{\mathbf{B}}=\hat{\mathbf{G}}\left(\lambda_{\mathbf{i}}\right)
$$

Properties of Krylov methods

(a) Number of operations: $\mathcal{O}\left(k n^{2}\right)$ or $\mathcal{O}\left(k^{2} n\right)$ vs. $\mathcal{O}\left(n^{3}\right) \Rightarrow$ efficiency
(b) Only matrix-vector multiplications are required. No matrix factorizations and/or inversions. No need to compute transformed model and then truncate.
(c) Drawbacks

- alobal error bound?
- $\hat{\Sigma}$ may not be stable.

Q: How to choose the projection points?

Properties of Krylov methods

(a) Number of operations: $\mathcal{O}\left(k n^{2}\right)$ or $\mathcal{O}\left(k^{2} n\right)$ vs. $\mathcal{O}\left(n^{3}\right) \Rightarrow$ efficiency
(b) Only matrix-vector multiplications are required. No matrix factorizations and/or inversions. No need to compute transformed model and then truncate.
(c) Drawbacks

- global error bound?
- $\hat{\Sigma}$ may not be stable.

Q: How to choose the projection points?

Properties of Krylov methods

(a) Number of operations: $\mathcal{O}\left(k n^{2}\right)$ or $\mathcal{O}\left(k^{2} n\right)$ vs. $\mathcal{O}\left(n^{3}\right) \Rightarrow$ efficiency
(b) Only matrix-vector multiplications are required. No matrix factorizations and/or inversions. No need to compute transformed model and then truncate.
(c) Drawbacks

- global error bound?
- $\hat{\Sigma}$ may not be stable.

Q: How to choose the projection points?

Part IV

Approximation methods: two recent results

Choice of projection points in Krylov methods

(1) Passivity preserving model reduction.
(2) Optimal \mathcal{H}_{2} model reduction.

Choice of Krylov projection points:

Passivity preserving model reduction

Passive systems:

$\mathcal{R e} \int_{-\infty}^{t} \mathbf{u}(\tau)^{*} \mathbf{y}(\tau) \mathrm{d} \tau \geq 0, \forall t \in \mathbb{R}, \forall \mathbf{u} \in \mathcal{L}_{2}(\mathbb{R})$.
Positive real rational functions:
(1) $\mathbf{G}(s)=\mathbf{D}+\mathbf{C}(s \mathbf{E}-\mathbf{A})^{-1} \mathbf{B}$, is analytic for $\mathcal{R e}(s)>0$,
(2) $\operatorname{Re} \mathbf{G}(s) \geq 0$ for $\operatorname{Re}(s) \geq 0, \quad s$ not a pole of $G(s)$.

Theorem: $\Sigma=\left(\begin{array}{c|c}\mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D}\end{array}\right)$ is passive $\Leftrightarrow \mathbf{G}(s)$ is positive real.

Conclusion: Positive realness of $\mathbf{G}(s)$ implies the existence of a spectral factorization $\mathrm{G}(s)+\mathbf{G}^{*}(-s)=\mathbf{W}(s) \mathbf{W}^{*}(-s)$, where $\mathbf{W}(s)$ is stable rational and $W(s)^{-1}$ is also stable. The spectral zeros λ_{i} of the system are the zeros of the spectral factor $\mathbf{W}\left(\lambda_{i}\right)=0, i=1, \cdots, n$.

Choice of Krylov projection points:

Passivity preserving model reduction

Passive systems:
$\mathcal{R} e \int_{-\infty}^{t} \mathbf{u}(\tau)^{*} \mathbf{y}(\tau) \mathrm{d} \tau \geq 0, \forall t \in \mathbb{R}, \forall \mathbf{u} \in \mathcal{L}_{2}(\mathbb{R})$.
Positive real rational functions:
(1) $\mathbf{G}(s)=\mathbf{D}+\mathbf{C}(s \mathbf{E}-\mathbf{A})^{-1} \mathbf{B}$, is analytic for $\operatorname{Re}(s)>0$,
(2) $\operatorname{Re} \mathbf{G}(s) \geq 0$ for $\operatorname{Re}(s) \geq 0, \quad s$ not a pole of $G(s)$.

Theorem: $\Sigma=\left(\begin{array}{c|c}\mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D}\end{array}\right)$ is passive $\Leftrightarrow \mathbf{G}(s)$ is positive real.

Conclusion: Positive realness of $\mathbf{G}(s)$ implies the existence of a spectral factorization $\mathbf{G}(s)+\mathbf{G}^{*}(-s)=\mathbf{W}(s) \mathbf{W}^{*}(-s)$, where $\mathbf{W}(s)$ is stable rational and $W(s)^{-1}$ is also stable. The spectral zeros λ_{i} of the system are the zeros of the spectral factor $\mathbf{W}\left(\lambda_{i}\right)=0, i=1, \cdots, n$.

Choice of Krylov projection points:

Passivity preserving model reduction

Passive systems:
$\mathcal{R} e \int_{-\infty}^{t} \mathbf{u}(\tau)^{*} \mathbf{y}(\tau) \mathrm{d} \tau \geq 0, \forall t \in \mathbb{R}, \forall \mathbf{u} \in \mathcal{L}_{2}(\mathbb{R})$.
Positive real rational functions:
(1) $\mathbf{G}(s)=\mathbf{D}+\mathbf{C}(s \mathbf{E}-\mathbf{A})^{-1} \mathbf{B}$, is analytic for $\operatorname{Re}(s)>0$,
(2) $\operatorname{Re} \mathbf{G}(s) \geq 0$ for $\operatorname{Re}(s) \geq 0, \quad s$ not a pole of $G(s)$.

Theorem: $\Sigma=\left(\begin{array}{c|c}\mathbf{E}, \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D}\end{array}\right)$ is passive $\Leftrightarrow \mathbf{G}(s)$ is positive real.

Conclusion: Positive realness of $\mathbf{G}(s)$ implies the existence of a spectral factorization $\mathbf{G}(s)+\mathbf{G}^{*}(-s)=\mathbf{W}(s) \mathbf{W}^{*}(-s)$, where $\mathbf{W}(s)$ is stable rational and $\mathbf{W}(s)^{-1}$ is also stable. The spectral zeros λ_{i} of the system are the zeros of the spectral factor $\mathbf{W}\left(\lambda_{i}\right)=0, i=1, \cdots, n$.

Passivity preserving model reduction

New result

- Method: Rational Krylov
- Solution: projection points = spectral zeros

Main result. If V, W are defined as above, where $\lambda_{1}, \cdots, \lambda_{k}$ are spectral zeros, and in addition $\lambda_{k+i}=-\lambda_{i}^{*}$, the reduced system satisfies:
(i) the interpolation constraints,
(ii) it is stable, and
(iii) it is passive.

Passivity preserving model reduction

New result

- Method: Rational Krylov
- Solution: projection points = spectral zeros

$$
\text { Recall: }\left\{\begin{array}{l}
\mathbf{V}=\left[\left(\lambda_{1} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{B} \cdots\left(\lambda_{k} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{B}\right] \in \mathbb{R}^{n \times k} \\
\mathbf{W}^{*}=\left[\begin{array}{c}
\mathbf{C}\left(\lambda_{k+1} \mathbf{E}-\mathbf{A}\right)^{-1} \\
\vdots \\
\mathbf{C}\left(\lambda_{2 k}\right. \\
\mathbf{E}-\mathbf{A})^{-1}
\end{array}\right] \in \mathbb{R}^{k \times n}
\end{array}\right.
$$

Main result. If \mathbf{V}, \mathbf{W} are defined as above, where $\lambda_{1}, \cdots, \lambda_{k}$ are spectral zeros, and in addition $\lambda_{k+i}=-\lambda_{i}^{*}$, the reduced system

satisfies:

(i) the interpolation constraints,
(ii) it is stable, and
(Iii) it is passive.

Passivity preserving model reduction

New result

- Method: Rational Krylov
- Solution: projection points = spectral zeros

Recall: $\left\{\begin{array}{l}\mathbf{V}=\left[\left(\lambda_{1} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{B} \cdots\left(\lambda_{k} \mathbf{E}-\mathbf{A}\right)^{-1} \mathbf{B}\right] \in \mathbb{R}^{n \times k} \\ \mathbf{W}^{*}=\left[\begin{array}{c}\mathbf{C}\left(\lambda_{k+1} \mathbf{E}-\mathbf{A}\right)^{-1} \\ \vdots \\ \mathbf{C}\left(\lambda_{2 k}\right. \\ \mathbf{E}-\mathbf{A})^{-1}\end{array}\right] \in \mathbb{R}^{k \times n}\end{array}\right.$

Main result. If \mathbf{V}, \mathbf{W} are defined as above, where $\lambda_{1}, \cdots, \lambda_{k}$ are spectral zeros, and in addition $\lambda_{k+i}=-\lambda_{i}^{*}$, the reduced system satisfies:
(i) the interpolation constraints,
(ii) it is stable, and
(iii) it is passive.

Spectral zero interpolation preserving passivity

 Hamiltonian EVD \& projection- Hamiltonian eigenvalue problem

$$
\left[\begin{array}{ccc}
\mathbf{A} & \mathbf{0} & \mathbf{B} \\
\mathbf{0} & -\mathbf{A}^{*} & -\mathbf{C}^{*} \\
\mathbf{C} & \mathbf{B}^{*} & \Delta^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{E} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{E}^{*} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right] \wedge
$$

The generalized eigenvalues \wedge are the spectral zeros of Σ

- Partition eigenvectors

Λ_{-}are the stable spectral zeros
- Projection

Spectral zero interpolation preserving passivity

 Hamiltonian EVD \& projection- Hamiltonian eigenvalue problem

$$
\left[\begin{array}{ccc}
\mathbf{A} & \mathbf{0} & \mathbf{B} \\
\mathbf{0} & -\mathbf{A}^{*} & -\mathbf{C}^{*} \\
\mathbf{C} & \mathbf{B}^{*} & \Delta^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{E} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{E}^{*} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right] \Lambda
$$

The generalized eigenvalues Λ are the spectral zeros of Σ

- Partition eigenvectors

$$
\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{X}_{-} & \mathbf{X}_{+} \\
\mathbf{Y}_{-} & \mathbf{Y}_{+} \\
\mathbf{Z}_{-} & \mathbf{Z}_{+}
\end{array}\right], \Lambda=\left[\begin{array}{lll}
\Lambda_{-} & & \\
& \Lambda_{+} & \\
& & \pm \infty
\end{array}\right]
$$

Λ_{-}are the stable spectral zeros

- Projection

Spectral zero interpolation preserving passivity

 Hamiltonian EVD \& projection- Hamiltonian eigenvalue problem

$$
\left[\begin{array}{ccc}
\mathbf{A} & \mathbf{0} & \mathbf{B} \\
\mathbf{0} & -\mathbf{A}^{*} & -\mathbf{C}^{*} \\
\mathbf{C} & \mathbf{B}^{*} & \Delta^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{E} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{E}^{*} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right] \Lambda
$$

The generalized eigenvalues Λ are the spectral zeros of Σ

- Partition eigenvectors

$$
\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{X}_{-} & \mathbf{X}_{+} \\
\mathbf{Y}_{-} & \mathbf{Y}_{+} \\
\mathbf{Z}_{-} & \mathbf{Z}_{+}
\end{array}\right], \Lambda=\left[\begin{array}{lll}
\Lambda_{-} & & \\
& \Lambda_{+} & \\
& & \pm \infty
\end{array}\right]
$$

$\Lambda_{\text {- }}$ are the stable spectral zeros

- Projection
- $\mathbf{V}=\mathbf{X}_{-}, \mathbf{W}=\mathbf{Y}_{-}$
- $\hat{\mathbf{E}}=\mathbf{W}^{*} \mathbf{E V}, \hat{\mathbf{A}}=\mathbf{W}^{*} \mathbf{A V}, \hat{\mathbf{B}}=\mathbf{W}^{*} \mathbf{B}, \hat{\mathbf{C}}=\mathbf{C V}, \hat{\mathbf{D}}=\mathbf{D}$

Dominant spectral zeros - SADPA

What is a good choice of k spectral zeros out of n ?

- Dominance criterion: Spectral zero s_{j} is dominant if: $\frac{\left|R_{j}\right|}{\left|\Re\left(s_{j}\right)\right|}$, is large.
- Efficient computation for large scale systems: we compute the $k \ll n$ most dominant eigenmodes of the Hamiltonian pencil.
- SADPA (Subspace Accelerated Dominant Pole Algorithm) solves this iteratively.

Conclusion:

Passivity preserving model reduction becomes a
structured eigenvalue problem

Dominant spectral zeros - SADPA

What is a good choice of k spectral zeros out of n ?

- Dominance criterion: Spectral zero s_{j} is dominant if: $\frac{\left|R_{j}\right|}{\left|\Re\left(s_{j}\right)\right|}$, is large.
- Efficient computation for large scale systems: we compute the $k \ll n$ most dominant eigenmodes of the Hamiltonian pencil.
- SADPA (Subspace Accelerated Dominant Pole Algorithm) solves this iteratively.

Conclusion:

Passivity preserving model reduction becomes a structured eigenvalue problem

Choice of Krylov projection points:

Optimal \mathcal{H}_{2} model reduction

The \mathcal{H}_{2} norm of a (scalar) system is:

$$
\|\Sigma\|_{\mathcal{H}_{2}}=\left(\int_{-\infty}^{+\infty} \mathbf{h}^{2}(t) d t\right)^{1 / 2}
$$

Goal: construct a Krylov projection such that

$$
\Sigma_{k}=\arg \min _{\substack{\operatorname{deg}(\hat{\Sigma})=r \\ \hat{\Sigma}: \text { stable }}}\|\Sigma-\hat{\Sigma}\|_{\mathcal{H}_{2}}
$$

That is, find a Krylov projection $\Pi=\mathbf{V W}^{*}, \mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times k}, \mathbf{W}^{*} \mathbf{V}=\mathbf{I}_{k}$, such that:

$$
\hat{\mathbf{A}}=\mathbf{W}^{*} \mathbf{A V}, \hat{\mathbf{B}}=\mathbf{W}^{*} \mathbf{B}, \hat{\mathbf{C}}=\mathbf{C V}
$$

Necessary optimality conditions \& resulting algorithm

Let $(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}})$ solve the optimal \mathcal{H}_{2} problem and let $\hat{\lambda}_{i}$ denote the eigenvalues of $\hat{\mathbf{A}}$. The necessary optimality conditions are

$$
\mathbf{G}\left(-\hat{\lambda}_{i}^{*}\right)=\hat{\mathbf{G}}\left(-\hat{\lambda}_{i}^{*}\right) \quad \text { and }\left.\quad \frac{d}{d s} \mathbf{G}(s)\right|_{s=-\hat{\lambda}_{i}^{*}}=\left.\frac{d}{d s} \hat{\mathbf{G}}(s)\right|_{s=-\hat{\lambda}_{i}^{*}}
$$

Thus the reduced system has to match the first two moments of the original system at the mirror images of the eigenvalues of \hat{A}. The proposed algorithm produces such a reduced order system.

Necessary optimality conditions \& resulting algorithm

Let $(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}})$ solve the optimal \mathcal{H}_{2} problem and let $\hat{\lambda}_{i}$ denote the eigenvalues of $\hat{\mathbf{A}}$. The necessary optimality conditions are

$$
\mathbf{G}\left(-\hat{\lambda}_{i}^{*}\right)=\hat{\mathbf{G}}\left(-\hat{\lambda}_{i}^{*}\right) \quad \text { and }\left.\quad \frac{d}{d s} \mathbf{G}(s)\right|_{s=-\hat{\lambda}_{i}^{*}}=\left.\frac{d}{d s} \hat{\mathbf{G}}(s)\right|_{s=-\hat{\lambda}_{i}^{*}}
$$

Thus the reduced system has to match the first two moments of the original system at the mirror images of the eigenvalues of \hat{A}. The proposed algorithm produces such a reduced order system.
(1) Make an initial selection of σ_{i}, for $i=1, \ldots, k$
(2) $\overline{\mathbf{w}}=\left[\left(\sigma_{1} \mathbf{I}-\mathbf{A}^{*}\right)^{-1} \mathbf{C}^{*}, \cdots,\left(\sigma_{k} \mathbf{I}-\mathbf{A}^{*}\right)^{-1} \mathbf{C}^{*}\right]$
(3) $\mathbf{v}=\left[\left(\sigma_{1} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B}, \cdots,\left(\sigma_{k} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B}\right]$
(4) while (not converged)
(1) $\hat{\mathbf{A}}=\left(\overline{\mathbf{W}}^{*} \mathbf{V}\right)^{-1} \overline{\mathbf{W}}^{*} \mathbf{A} \mathbf{V}$,
(2) $\sigma_{i} \longleftarrow-\lambda_{i}(\hat{\mathbf{A}})+$ Newton correction, $i=1, \ldots, k$,
(3) $\overline{\mathbf{w}}=\left[\left(\sigma_{1} \mathbf{I}-\mathbf{A}^{*}\right)^{-1} \mathbf{C}^{*}, \cdots,\left(\sigma_{k} \mathbf{I}-\mathbf{A}^{*}\right)^{-1} \mathbf{C}^{*}\right]$,
(4) $\mathbf{v}=\left[\left(\sigma_{1} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B}, \cdots,\left(\sigma_{k} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B}\right]$
(5) $\hat{\mathbf{A}}=\left(\overline{\mathbf{W}}^{*} \mathbf{V}\right)^{-1} \overline{\mathbf{W}}^{*} \mathbf{A V}, \hat{\mathbf{B}}=\left(\overline{\mathbf{W}}^{*} \mathbf{V}\right)^{-1} \overline{\mathbf{W}}^{*} \mathbf{B}, \hat{\mathbf{C}}=\mathbf{C V}$

Moderate-dimensional example

SZM with SADPA implementation

- total system variables $\mathrm{n}=902$, independent variables $\operatorname{dim}=599$, reduced dimension $\mathrm{k}=21$
- SADPA computed $2 \mathrm{k}=42$ dominant spectral zeros automatically (95 iterations, CPU time: ~ 16 s)
- reduced model captures dominant modes

Dominant spectral zeros

\mathcal{H}_{∞} and \mathcal{H}_{2} error norms

Relative norms of the error systems

Reduction Method $n=902$, dim $=599, k=21$	\mathcal{H}_{∞}	\mathcal{H}_{2}
PRIMA	1.4775	-
Spectral Zero Method with SADPA	0.9628	0.841
Optimal \mathcal{H}_{2}	0.5943	$\mathbf{0 . 4 6 2 1}$
Balanced truncation (BT)	0.9393	0.6466
Riccati Balanced Truncation (PRBT)	0.9617	0.8164

Approximation methods: Summary

Krylov

- Pealization
- Interpolation
- Lanczos
- Arnoldi

Properties

- numerical efficiency
- $n \gg 10^{3}$
- cholice of matching moments

Krylov/SVD Methods

- Stability
- Error bound
- $n \approx 10^{3}$

Approximation methods: Summary

Krylov

- Realization
- Interpolation
- Lanczos
- Arnoldi

SVD

Properties

- numerical efficiency

Nonlinear systems Linear systems

- POD methods
- Balanced truncation
- Empirical Gramians
- Hankel approximation

Krylov/SVD Methods

Approximation methods: Summary

- numerical efficiency
- $n \gg 10^{3}$
- choice of matching moments

Krylov/SVD Methods

Approximation methods: Summary

Approximation methods: Summary

Model reduction from data:

On-chip analog electronics

Chips for communication systems consist of large analog and RF blocks. To avoid costly re-fabrication, a verification cycle is developed for simulation and design optimization. A common approach to this verification is to replace the circuit block layout by systems of equations and subsequently use their accurate approximants for system simulation. Example: FPGA (Field Programmable Gate Arrays).

Methodology. An input-output approach for modeling of the analog systems can be employed. It treats them as black boxes. In the linear passive case, this leads to identification problems using
multi-port S-parameters

Model reduction from data:

On-chip analog electronics

Chips for communication systems consist of large analog and RF blocks. To avoid costly re-fabrication, a verification cycle is developed for simulation and design optimization. A common approach to this verification is to replace the circuit block layout by systems of equations and subsequently use their accurate approximants for system simulation. Example: FPGA (Field Programmable Gate Arrays).

Methodology. An input-output approach for modeling of the analog systems can be employed. It treats them as black boxes. In the linear passive case, this leads to identification problems using
multi-port S-parameters

Model reduction from data:

On-chip analog electronics

Chips for communication systems consist of large analog and RF blocks. To avoid costly re-fabrication, a verification cycle is developed for simulation and design optimization. A common approach to this verification is to replace the circuit block layout by systems of equations and subsequently use their accurate approximants for system simulation. Example: FPGA (Field Programmable Gate Arrays).

Methodology. An input-output approach for modeling of the analog systems can be employed. It treats them as black boxes. In the linear passive case, this leads to identification problems using

multi-port S-parameters

Measurement of S-parameters

VNA (Vector Network Analyzer) - Magnitude of S-parameters for 2 ports

Analysis of model reduction from S-parameters

Tangential interpolation
Given: • right data: $\left(\lambda_{i} ; \mathbf{r}_{i}, \mathbf{w}_{i}\right), i=1, \cdots, k$

- left data: $\left(\mu_{j} ; \ell_{j}, \mathbf{v}_{j}\right), j=1, \cdots, \boldsymbol{q}$.

We assume for simplicity that all points are distinct.
Problem: Find rational $p \times m$ matrices $\mathrm{H}(s)$, such that

Right data:

Left data:

Analysis of model reduction from S-parameters

Tangential interpolation
Given: • right data: $\left(\lambda_{i} ; \mathbf{r}_{i}, \mathbf{w}_{i}\right), i=1, \cdots, k$

- left data: $\left(\mu_{j} ; \ell_{j}, \mathbf{v}_{j}\right), j=1, \cdots, \boldsymbol{q}$.

We assume for simplicity that all points are distinct.
Problem: Find rational $p \times m$ matrices $\mathbf{H}(s)$, such that

$$
\mathbf{H}\left(\lambda_{i}\right) \mathbf{r}_{i}=\mathbf{w}_{i} \quad \ell_{j} \mathbf{H}\left(\mu_{j}\right)=\mathbf{v}_{j}
$$

Right data:

Left data:

Analysis of model reduction from S-parameters

Tangential interpolation
Given: • right data: $\left(\lambda_{i} ; \mathbf{r}_{i}, \mathbf{w}_{i}\right), i=1, \cdots, k$

- left data: $\left(\mu_{j} ; \ell_{j}, \mathbf{v}_{j}\right), j=1, \cdots, q$.

We assume for simplicity that all points are distinct.
Problem: Find rational $p \times m$ matrices $\mathbf{H}(s)$, such that

$$
\mathbf{H}\left(\lambda_{i}\right) \mathbf{r}_{i}=\mathbf{w}_{i} \quad \ell_{j} \mathbf{H}\left(\mu_{j}\right)=\mathbf{v}_{j}
$$

Right data:

$$
\Lambda=\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{k}
\end{array}\right] \in \mathbb{C}^{k \times k}, \quad \begin{array}{llll}
& \mathbf{R}=\left[\begin{array}{llll}
\mathbf{r}_{1} & \mathbf{r}_{2}, & \cdots & \mathbf{r}_{k}
\end{array}\right] \in \mathbb{C}^{m \times k} \\
& \mathbf{W}=\left[\begin{array}{llll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{k}
\end{array}\right] \in \mathbb{C}^{p \times k}
\end{array}
$$

Left data:

Analysis of model reduction from S-parameters

Tangential interpolation
Given: • right data: $\left(\lambda_{i} ; \mathbf{r}_{i}, \mathbf{w}_{i}\right), i=1, \cdots, k$

- left data: $\left(\mu_{j} ; \ell_{j}, \mathbf{v}_{j}\right), j=1, \cdots, q$.

We assume for simplicity that all points are distinct.
Problem: Find rational $p \times m$ matrices $\mathbf{H}(s)$, such that

$$
\mathbf{H}\left(\lambda_{i}\right) \mathbf{r}_{i}=\mathbf{w}_{i} \quad \ell_{j} \mathbf{H}\left(\mu_{j}\right)=\mathbf{v}_{j}
$$

Right data:

$$
\Lambda=\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{k}
\end{array}\right] \in \mathbb{C}^{k \times k}, \quad \begin{array}{llll}
& \mathbf{R}=\left[\begin{array}{llll}
\mathbf{r}_{1} & \mathbf{r}_{2}, & \cdots & \mathbf{r}_{k}
\end{array}\right] \in \mathbb{C}^{m \times k} \\
& \mathbf{W}=\left[\begin{array}{llll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{k}
\end{array}\right] \in \mathbb{C}^{p \times k}
\end{array}
$$

Left data:

$$
M=\left[\begin{array}{ccc}
\mu_{1} & & \\
& \ddots & \\
& & \mu_{q}
\end{array}\right] \in \mathbb{C}^{q \times q}, \mathbf{L}=\left[\begin{array}{c}
\ell_{1} \\
\vdots \\
\ell_{q}
\end{array}\right] \in \mathbb{C}^{q \times p}, \mathbf{V}=\left[\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{q}
\end{array}\right] \in \mathbb{C}^{q \times m}
$$

The Loewner and the shifted Loewner matrices

We define the Loewner matrix

$$
\mathbb{L}=\left[\begin{array}{ccc}
\frac{\mathbf{v}_{1} \mathbf{r}_{1}-\ell_{1} \mathbf{w}_{1}}{\lambda_{1}-\mu_{1}} & \cdots & \frac{\mathbf{v}_{1} \mathbf{r}_{k}-\ell_{1} \mathbf{w}_{k}}{\lambda_{1}-\mu_{k}} \\
\vdots & \ddots & \vdots \\
\frac{\mathbf{v}_{q} \mathbf{r}_{1}-\ell_{q} \mathbf{w}_{1}}{\lambda_{q}-\mu_{1}} & \cdots & \frac{\mathbf{v}_{q} \mathbf{r}_{k}-\ell_{q} \mathbf{w}_{k}}{\lambda_{q}-\mu_{k}}
\end{array}\right] \in \mathbb{C}^{q \times k}
$$

and the shifted Loewner matrix

$$
\sigma \mathbb{L}=\left[\begin{array}{ccc}
\frac{\lambda_{1} \mathbf{v}_{1} \mathbf{r}_{1}-\ell_{1} \mathbf{w}_{1} \mu_{1}}{\lambda_{1}-\mu_{1}} & \cdots & \frac{\lambda_{1} \mathbf{v}_{1} \mathbf{r}_{k}-\ell_{1} \mathbf{w}_{k} \mu_{k}}{\lambda_{1}-\mu_{k}} \\
\vdots & \ddots & \vdots \\
\frac{\lambda_{q} \mathbf{v}_{q} \mathbf{r}_{1}-\ell_{q} \mathbf{w}_{1} \mu_{1}}{\lambda_{q}-\mu_{1}} & \cdots & \frac{\lambda_{q} \mathbf{v}_{q} \mathbf{r}_{k}-\ell_{q} \mathbf{w}_{k} \mu_{k}}{\lambda_{q}-\mu_{k}}
\end{array}\right] \in \mathbb{C}^{q \times k}
$$

Remark. For a single interpolation point the Loewner and shifted Loewner matrices reduce to Hankel matrices.

Construction of Interpolants (Models)

Assume that $k=\ell$, and let

$$
\operatorname{det}(x \mathbb{L}-\sigma \mathbb{L}) \neq 0, \quad x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}
$$

Then

is a minimal realization of an interpolant of the data, i.e., the function

interpolates the data.

Construction of Interpolants (Models)

Assume that $k=\ell$, and let

$$
\operatorname{det}(x \mathbb{L}-\sigma \mathbb{L}) \neq 0, \quad x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}
$$

Then

$$
\mathbf{E}=-\mathbb{L}, \quad \mathbf{A}=-\sigma \mathbb{L}, \quad \mathbf{B}=\mathbf{V}, \quad \mathbf{C}=\mathbf{W}
$$

is a minimal realization of an interpolant of the data, i.e., the function

interpolates the data.

Construction of Interpolants (Models)

Assume that $k=\ell$, and let

$$
\operatorname{det}(x \mathbb{L}-\sigma \mathbb{L}) \neq 0, \quad x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}
$$

Then

$$
\mathbf{E}=-\mathbb{L}, \quad \mathbf{A}=-\sigma \mathbb{L}, \quad \mathbf{B}=\mathbf{V}, \quad \mathbf{C}=\mathbf{W}
$$

is a minimal realization of an interpolant of the data, i.e., the function

$$
\mathbf{H}(s)=\mathbf{W}(\sigma \mathbb{L}-s \mathbb{L})^{-1} \mathbf{V}
$$

interpolates the data.

Construction of interpolants: New procedure

Main assumption:

$$
\operatorname{rank}(x \mathbb{L}-\sigma \mathbb{L})=\operatorname{rank}\left(\begin{array}{ll}
\mathbb{L} & \sigma \mathbb{L}
\end{array}\right)=\operatorname{rank}\binom{\mathbb{L}}{\sigma \mathbb{L}}=: k, x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}
$$

Then for some $x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}$, we compute the SVD

with $\operatorname{rank}(x \mathbb{L}-\sigma \mathbb{L})=\operatorname{rank}(\Sigma)=\operatorname{size}(\Sigma)=: k, \mathbf{Y} \in \mathbb{C}^{\nu \times k}, \mathbf{X} \in \mathbb{C}^{k \times \rho}$.
Theorem. A realization [E, A, B, C], of an interpolant is given as follows:

Remark. The singular values of $x \mathbb{L}-\sigma \mathbb{L}$ play a role similar to the that of the Hankel singular values.

Construction of interpolants: New procedure

Main assumption:

$$
\operatorname{rank}(x \mathbb{L}-\sigma \mathbb{L})=\operatorname{rank}\left(\begin{array}{ll}
\mathbb{L} & \sigma \mathbb{L}
\end{array}\right)=\operatorname{rank}\binom{\mathbb{L}}{\sigma \mathbb{L}}=: k, x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}
$$

Then for some $x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}$, we compute the SVD

$$
x \mathbb{L}-\sigma \mathbb{L}=\mathbf{Y} \Sigma \mathbf{X}
$$

with $\operatorname{rank}(x \mathbb{L}-\sigma \mathbb{L})=\operatorname{rank}(\Sigma)=\operatorname{size}(\Sigma)=: k, \mathbf{Y} \in \mathbb{C}^{\nu \times k}, \mathbf{X} \in \mathbb{C}^{k \times \rho}$.
Theorem. A realization [E, A, B, C], of an interpolant is given as follows:

Remark. The singular values of $x \mathbb{L}-\sigma \mathbb{L}$ play a role similar to the that of the Hankel singular values.

Construction of interpolants: New procedure

Main assumption:

$$
\operatorname{rank}(x \mathbb{L}-\sigma \mathbb{L})=\operatorname{rank}\left(\begin{array}{ll}
\mathbb{L} & \sigma \mathbb{L}
\end{array}\right)=\operatorname{rank}\binom{\mathbb{L}}{\sigma \mathbb{L}}=: k, x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}
$$

Then for some $x \in\left\{\lambda_{i}\right\} \cup\left\{\mu_{j}\right\}$, we compute the SVD

$$
x \mathbb{L}-\sigma \mathbb{L}=\mathbf{Y} \Sigma \mathbf{X}
$$

with $\operatorname{rank}(x \mathbb{L}-\sigma \mathbb{L})=\operatorname{rank}(\Sigma)=\operatorname{size}(\Sigma)=: k, \mathbf{Y} \in \mathbb{C}^{\nu \times k}, \mathbf{X} \in \mathbb{C}^{k \times \rho}$.
Theorem. A realization $[\mathbf{E}, \mathbf{A}, \mathbf{B}, \mathbf{C}$], of an interpolant is given as follows:

$$
\begin{array}{|l|l|}
\hline \mathbf{E}=-\mathbf{Y}^{*} \mathbb{L} \mathbf{X}^{*} & \mathbf{B}=\mathbf{Y}^{*} \mathbf{V} \\
\hline \mathbf{A}=-\mathbf{Y}^{*} \sigma \mathbb{L} \mathbf{X}^{*} & \mathbf{C}=\mathbf{W} \mathbf{X}^{*} \\
\hline
\end{array}
$$

Remark. The singular values of $x \mathbb{L}-\sigma \mathbb{L}$ play a role similar to the that of the Hankel singular values.

Example: Four-pole band-pass filter

- 1000 measurements between 40 and 120 GHz ; S-parameters 2×2, MIMO interpolation $\Rightarrow \mathbb{L}, \sigma \mathbb{L} \in \mathbb{R}^{2000 \times 2000}$.

The singular values of $\mathbb{L}, \sigma \mathbb{L}$
 $17^{\text {th }}$-order approximant

Summary: Advantages of this method
(1): No need to invert \mathbf{F}
(2): Rank (sing. vals) of $x \mathbb{L}-\sigma \mathbb{L}$ provides the model complexity.
(3): Can handle large-number of inputs/outputs by means of tangential interpolation.

Example: Four-pole band-pass filter

- 1000 measurements between 40 and 120 GHz ; S-parameters 2×2, MIMO interpolation $\Rightarrow \mathbb{L}, \sigma \mathbb{L} \in \mathbb{R}^{2000 \times 2000}$.

The singular values of $\mathbb{L}, \sigma \mathbb{L}$

The $S(1,1)$ and $S(1,2)$ parameter data $17^{\text {th }}$-order approximant

Summary: Advantages of this method

(1): No need to invert E.
(2): Rank (sing. vals) of $x \mathbb{L}-\sigma \mathbb{L}$ provides the model complexity.
(3): Can handle large-number of inputs/outputs by means of tangential interpolation.

Part V

Challenges in complexity reduction

(Some) Challenges in complexity reduction

- Model reduction of uncertain systems
- Model reduction of differential-algebraic (DAE) systems
- Domain decomposition methods
- Parallel algorithms for sparse computations in model reduction
- Develonment/validation of control algorithms based on reduced models
- Model reduction and data assimilation (weather prediction)
- Active control of high-rise buildings
- MEMS and multi-physics problems
- VLSI design
- Molecular Dynamics (MD) simulations
- Nanoelectronics

(Some) Challenges in complexity reduction

- Model reduction of uncertain systems
- Model reduction of differential-algebraic (DAE) systems
- Domain decomposition methods
- Parallel algorithms for sparse computations in model reduction
- Development/validation of control algorithms based on reduced models
- Model reduction and data assimilation (weather prediction)
- Active control of high-rise buildings
- MEMS and multi-physics problems
- VLSI design
- Molecular Dynamics (MD) simulations
- Nanoelectronics

(Some) Challenges in complexity reduction

- Model reduction of uncertain systems
- Model reduction of differential-algebraic (DAE) systems
- Domain decomposition methods
- Parallel algorithms for sparse computations in model reduction
- Development/validation of control algorithms based on reduced models
- Model reduction and data assimilation (weather prediction)
- Active control of high-rise buildings
- MEMS and multi-physics problems
- VLSI design
- Molecular Dynamics (MD) simulations
- Nanoelectronics

Future challenge: Nanoelectronics

Moore's law and scaling in integrated circuits

Scaling Law

Size 1/2

Unfavorable effects

Size	x1/2
Voltage	x1/2
Electric Field	x1
Speed	x3
Cost	x1/4

Power density $\quad x 1.6$
RC delay/Tr. delay x3.2
Current density $\quad x 1.6$
Voltage noise x3.2
Design complexity x 4

Future challenge: Nanoelectronics

Heat generation

Kitchen stove:	18 cm diameter,	$\mathrm{P} \approx 1.5 \mathrm{~kW}$	$\Rightarrow 6 \mathrm{~W} / \mathrm{cm}^{2}$
Pentium IV:	Area $\approx 2 \mathrm{~cm}^{2}$,	$\mathrm{P} \approx 88 \mathrm{~W} \quad \Rightarrow 40 \mathrm{~W} / \mathrm{cm}^{2}$	

Power Dissipation

Power Density

Power density too high to keep junctions at low temp

Conclusion: According to the 2006 ITRS, at the present rate of miniaturization, the current technology can be sustained for a few more years (until the feature size reaches 45 nm)

Future challenge: Nanoelectronics

Heat generation

Kitchen stove:	18 cm diameter,	$\mathrm{P} \approx 1.5 \mathrm{~kW}$	$\Rightarrow 6 \mathrm{~W} / \mathrm{cm}^{2}$
Pentium IV:	Area $\approx 2 \mathrm{~cm}^{2}$,	$\mathrm{P} \approx 88 \mathrm{~W} \quad \Rightarrow 40 \mathrm{~W} / \mathrm{cm}^{2}$	

Power Dissipation

Power Density

Power density too high to keep junctions at low temp

Conclusion: According to the 2006 ITRS, at the present rate of miniaturization, the current technology can be sustained for a few more years (until the feature size reaches 45 nm).

Future challenge: Nanoelectronics

Proposed interconnect solution: carbon nanotubes

- CNTs have been proposed as a replacement for on-chip copper interconnects due to their large conductivity and current carrying capabilities.
- Advantages over copper:
(1) Resistance. CNTs have lower resistance than standard copper
(2) Current density. Single-wall Carbon Nanotubes (SWCNTs) with diameters ranging from 0.4 nm to 4 nm have been reported, with current densities as large as $10^{10} \mathrm{~A} / \mathrm{cm}^{2}$, versus traditional metallic interconnect with typical current densities on the order of $10^{5} \mathrm{~A} / \mathrm{cm}^{2}$.
(3) Electromigration. CNTs are much less susceptible to electromigration problems with thermal conductivity more than 10 times higher than conventional copper.

Future challenge: Nanoelectronics

Carbon nanotubes (CNTs): modeling

Analytical model of SWCNT: transmission line involving magnetic and kinetic inductance, as well as electrostatic and quantum capacitance.

Future challenge: Nanoelectronics

Some mathematical challenges

- CNTs: Develop a scalable state space representation of carbon nanotube circuit models that accurately capture the statistical distribution of single as well as carbon nanotube bundles.
- CNTs: Develop model reduction techniques to solve and accurately approximate CNT based interconnects resulting from field solvers. Evaluate the complexity of these methods used for CNT based interconnects and conventional copper interconnects for their suitability in fast simulation.

References

- Passivity preserving model reduction
- Antoulas SCL (2005)
- Sorensen SCL (2005)
- Ionutiu, Rommes, Antoulas IEEE CAD (2008)
- Optimal \mathcal{H}_{2} model reduction
- Gugercin, Antoulas, Beattie SIMAX (2008)
- Low-rank solutions of Lyapunov equations
- Gugercin, Sorensen, Antoulas, Numerical Algorithms (2003)
- Sorensen (2006)
- Model reduction from data
- Mayo, Antoulas LAA (2007)
- Lefteriu, Antoulas, Tech. Report (2007)
- General reference: Antoulas, SIAM (2005)

