Modeling and numerical simulations of fish like swimming

Michel Bergmann, Angelo Iollo

INRIA Bordeaux Sud-Ouest, équipe MC2 Institut de Mathématiques Appliquées de Bordeaux 33405 TALENCE cedex, France

Workshop Maratea, may 13 2010 – p. 1

Context and objectives

► Context : ANR CARPEINETER Cartesian grids, penalization and level set for the simulation and optimisation of complex flows

► Objectives:

- \hookrightarrow Model and simulate moving bodies S (translation, rotation, deformation, ..)
- \hookrightarrow Couple Fluid and Structures
- $\hookrightarrow \textbf{Cartesian meshes} \\ \textit{Avoid remeshing}$
- \hookrightarrow Penalization of the equations To take into account the bodies
- → Level Set
 To track interfaces
 (fluid/fluid, fluid/structures)

Outline

Flow modeling

Numerical approach

Method: discretization / body motion Validation

Applications: 2D fish swimming

Parametrization Classification: BCF On the power spent to swim Maneuvers and turns Fish school (3 fishes)

3D locomotion

Conclusions and future works

1_

Institut de Mathématiques de

Bordeaux

► **Classical model:** Navier-Stokes equations (incompressible):

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u}\cdot\nabla)\boldsymbol{u}\right) = -\nabla p + \mu\Delta\boldsymbol{u} + \rho\boldsymbol{g} \quad \text{dans} \quad \Omega_{\boldsymbol{f}}, \tag{1a}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \quad \text{dans} \quad \Omega_f,$$
 (1b)

$$oldsymbol{u} = oldsymbol{u}_i$$
 Sur $\partial \Omega_i$ (1c)

$$oldsymbol{u} = oldsymbol{u}_f$$
 sur $\partial\Omega$ (1d)

Numerical resolution

Need of meshes that fit the body geometries

 \hookrightarrow Costly remeshing for moving and deformable bodies!!

► **Penalization model:** penalized Navier-Stokes equations (incompressible):

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u}\right) = -\nabla p + \mu \Delta \boldsymbol{u} + \rho \boldsymbol{g} + \lambda \rho \sum_{1=1}^{N_s} \chi_i(\boldsymbol{u}_i - \boldsymbol{u}) \quad \text{dans} \quad \Omega, \quad (2a)$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \quad \text{dans} \quad \Omega,$$
 (2b)

$$\boldsymbol{u} = \boldsymbol{u}_f \quad \text{sur} \quad \partial \Omega.$$
 (2c)

 $\lambda \gg 1$ penalization factor \rightarrow Solution eqs (2) tends to solution eqs (1) *w.r.t.* $\varepsilon = 1/\lambda \rightarrow 0$. χ_i characteristic function:

$$\chi_i(\boldsymbol{x}) = 1 \quad \text{if} \quad \boldsymbol{x} \in \Omega_i,$$
 (3a)

$$\chi_i(\boldsymbol{x}) = 0$$
 else if. (3b)

Numerical resolution

No need of meshes that fit the body geometries

 \hookrightarrow Cartesian meshes

► Transport of the characteristic function for moving bodies

$$\frac{\partial \chi_i}{\partial t} + (\boldsymbol{u}_i \cdot \nabla) \chi_i = 0.$$
(4)

Other choice: $\chi_i = H(\phi_i)$ where H is Heaviside function and ϕ_i the signed distance function ($\phi_i(\boldsymbol{x}) > 0$ if $\boldsymbol{x} \in \Omega_i$, $\phi_i(\boldsymbol{x}) = 0$ si $\boldsymbol{x} \in \partial \Omega_i$, $\phi_i(\boldsymbol{x}) < 0$ else if).

$$\frac{\partial \phi_i}{\partial t} + (\boldsymbol{u}_i \cdot \nabla) \phi_i = 0.$$
 (5)

► Density

$$\widetilde{\rho} = \rho_f \left(1 - \sum_{i=1}^{N_s} \chi_i \right) + \sum_{i=1}^{N_s} \rho_i \chi_i.$$
(6)

Workshop Maratea, may 13 2010 - p.

▶ Dimensionless equations with U_{∞} , D, ρ_f , $Re = \frac{\rho U_{\infty} D}{\mu}$:

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla p + \frac{1}{Re}\Delta \boldsymbol{u} + \boldsymbol{g} + \lambda \sum_{1=1}^{N_s} \chi_i(\boldsymbol{u}_i - \boldsymbol{u}) \quad \text{dans} \quad \Omega,$$
(7a)

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \quad \text{dans} \quad \Omega,$$
 (7b)

$$oldsymbol{u} = oldsymbol{u}_f$$
 sur $\partial\Omega$ (7c)

▶ Body velocity u_i :

$$oldsymbol{u}_i = \overline{oldsymbol{u}}_i + \widehat{oldsymbol{u}}_i + \widetilde{oldsymbol{u}}_i$$
 (8)

with:

 $\overline{\boldsymbol{u}}_i$ translation velocity

 $\widehat{\boldsymbol{u}}_i$ rotation velocity

 \widetilde{u} deformation velocity (imposed for the swim)

- Space: Cartesian meshes, collocation with compact "non oscillating" scheme, Centered FD 2nd order and upwind 3rd order for convective terms
- ► Time: 1^{st} order explicit euler, implicit penalization (larger λ)

$$\frac{\boldsymbol{u}^{(n+1)} - \boldsymbol{u}^{(n)}}{\Delta t} + (\boldsymbol{u}^{(n)} \cdot \nabla)\boldsymbol{u}^{(n)} = -\nabla p^{(n+1)} + \frac{1}{Re}\Delta \boldsymbol{u}^{(n+1)} + \boldsymbol{g}$$
$$+\lambda \sum_{1=1}^{N_s} \chi_i^{(n+1)} (\boldsymbol{u}_i^{(n+1)} - \boldsymbol{u}^{(n+1)}),$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u}^{(n+1)} = 0$$

\Rightarrow Problems

 $\hookrightarrow \text{Pressure uncoupled}$

 \hookrightarrow The function $\chi_i^{(n+1)}$ and velocity $oldsymbol{u}_i^{(n+1)}$ are not known

\Rightarrow Solutions

d e a

- \hookrightarrow Chorin scheme (predictor/corrector)
- $\square \hookrightarrow$ Fractional step method (2 steps)

► Fractional steps method

$$\begin{split} \frac{\boldsymbol{u}^{(n+1)} - \boldsymbol{u}^{(n)}}{\Delta t} + (\boldsymbol{u}^{(n)} \cdot \nabla) \boldsymbol{u}^{(n)} &= -\nabla p^{(*)} + \frac{1}{Re} \Delta \boldsymbol{u}^{(n+1)} + \boldsymbol{g} \\ &+ \left(\nabla p^{(*)} - \nabla p^{(n+1)} \right) \\ &+ \lambda \sum_{1=1}^{N_s} \chi_i^{(n+1)} (\boldsymbol{u}_i^{(n+1)} - \boldsymbol{u}^{(n+1)}), \\ \boldsymbol{\nabla} \cdot \boldsymbol{u}^{(n+1)} &= 0 \\ & \boldsymbol{u}_i^{(n+1)} = f(\boldsymbol{u}^{(n+1)}, p^{(n+1)}) \end{split}$$

$$\begin{split} & \textbf{Step 1:} \Rightarrow \boldsymbol{u}^{(*)}, p^{(*)} \\ & \textbf{Step 2:} \Rightarrow \widetilde{\boldsymbol{u}}^{(n+1)}, \widetilde{p}^{(n+1)} \\ & \textbf{Step 3:} \Rightarrow \boldsymbol{u}_i^{(n+1)} = \widetilde{f}(\widetilde{\boldsymbol{u}}^{(n+1)}, \widetilde{p}^{(n+1)}) \\ & \textbf{Step 4:} \Rightarrow \boldsymbol{u}^{(n+1)}, p^{(n+1)} \end{split}$$

► Step 1 : prediction

$$\frac{\boldsymbol{u}^{(*)} - \boldsymbol{u}^{(n)}}{\Delta t} + (\boldsymbol{u}^{(n)} \cdot \nabla)\boldsymbol{u}^{(n)} = -\nabla p^{(*)} + \frac{1}{Re}\Delta \boldsymbol{u}^{(*)} + \boldsymbol{g}$$

► Step 2 : correction

$$\frac{\widetilde{\boldsymbol{u}}^{(n+1)} - \boldsymbol{u}^{(*)}}{\Delta t} = \nabla p^{(*)} - \nabla p^{(n+1)}$$
$$\boldsymbol{\nabla} \cdot \widetilde{\boldsymbol{u}}^{(n+1)} = 0$$

with
$$\psi =
abla p^{(*)} -
abla p^{(n+1)}$$
, on a $\Delta \psi =
abla \cdot oldsymbol{u}^{(*)}$

$$\widetilde{\boldsymbol{u}}^{n+1} = \widetilde{\boldsymbol{u}}^* - \nabla \psi$$
$$\widetilde{p}^{n+1} = \widetilde{p}^* + \frac{\psi}{\Delta t}$$

Etape 3 : body motion Compute forces F_i and torques \mathcal{M}_i

$$m \frac{\mathrm{d}\overline{u}_{i}}{\mathrm{d}t} = F_{i} + mg,$$
 \overline{u}_{i} translation velocity, m mass (14a)
 $\frac{\mathrm{d}J\Omega_{i}}{\mathrm{d}t} = \mathcal{M}_{i},$ Ω_{i} angular velocity, J inertia matrix (14b)

Rotation velocity $\widehat{u}_i = \Omega_i \times r_G$ with $r_G = x - x_G$ (x_G center of mass). Stress tensor $\mathbb{T}(u, p) = -p\mathbb{I} + \frac{1}{Re}(\nabla u + \nabla u^T)$ et *n* outward normal unit vector at s_i :

$$F_{i} = -\int_{\partial\Omega_{i}} \mathbb{T}(\boldsymbol{u}, p) \boldsymbol{n} \, \mathrm{d}\boldsymbol{x}, \tag{15a}$$
$$\mathcal{M}_{i} = -\int_{\partial\Omega_{i}} \mathbb{T}(\boldsymbol{u}, p) \boldsymbol{n} \times \boldsymbol{r}_{G} \, \mathrm{d}\boldsymbol{x}. \tag{15b}$$

Definition : Arbitrarily domain $\Omega_{f_i}(t)$ surrounding body *i*.

Forces:

$$\begin{aligned} \boldsymbol{F}_{i} &= -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{f_{i}}(t)} \boldsymbol{u} \,\mathrm{d}V + \int_{\partial\Omega_{f_{i}}(t)} \left(\mathbb{T} + (\boldsymbol{u} - \boldsymbol{u}_{i}) \otimes \boldsymbol{u}\right) \boldsymbol{n} \,\mathrm{d}S \\ &+ \int_{\partial\Omega_{i}(t)} \left(\left(\boldsymbol{u} - \boldsymbol{u}_{i}\right) \otimes \boldsymbol{u}\right) \boldsymbol{n} \,\mathrm{d}S. \end{aligned}$$
(16a)

Torques:

$$\mathcal{M}_{i} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{f_{i}}(t)} \boldsymbol{u} \times \boldsymbol{r}_{G} \,\mathrm{d}V + \int_{\partial\Omega_{f_{i}}(t)} \left(\mathbb{T} + (\boldsymbol{u} - \boldsymbol{u}_{i}) \otimes \boldsymbol{u}\right) \boldsymbol{n} \times \boldsymbol{r}_{G} \,\mathrm{d}S + \int_{\partial\Omega_{i}(t)} \left(\left(\boldsymbol{u} - \boldsymbol{u}_{i}\right) \otimes \boldsymbol{u}\right) \boldsymbol{n} \times \boldsymbol{r}_{G} \,\mathrm{d}S.$$
(16b)

► Step 4 : Update velocity using implicit penalization

$$\frac{\boldsymbol{u}^{(n+1)} - \widetilde{\boldsymbol{u}}^{(n+1)}}{\Delta t} = \lambda \sum_{1=1}^{N_s} \chi_i^{(n+1)} (\boldsymbol{u}_i^{(n+1)} - \boldsymbol{u}^{(n+1)})$$

► Summary:

- ho Solve Navier-Stokes equation without penalization $\Rightarrow \widetilde{u}^{(n+1)}$, $\widetilde{p}^{(n+1)}$
- \triangleright Compute body motion \Rightarrow $\boldsymbol{u}_{i}^{(n+1)}$, $\chi_{i}^{(n+1)}$
- \triangleright Correct solution with penalization \Rightarrow $\boldsymbol{u}^{(n+1)}$, $p^{(n+1)}$,

► Remark:

▷ Step 4 can be implemented in step 1 using explicit body velocity (time order is 1).

► Improvement of the penalization order

 \hookrightarrow Test case: 2D Green-Taylor vortex with analytical solution ($0 \le x, y \le \pi$, Re = 100)

$$u(t, \mathbf{x}) = \sin(x)\cos(y)\exp(-2t/Re), v(t, \mathbf{x}) = -\cos(x)\sin(y)\exp(-2t/Re), p(t, \mathbf{x}) = \frac{1}{4}(\cos(2x) + \cos(2y))\exp(-4t/Re).$$
 $E = \sqrt{\int_{\Omega} (\widetilde{u}(T_f, \mathbf{x}) - u(T_f, \mathbf{x}))^2 \, \mathrm{d}x.$

 \hookrightarrow "Non intrusive" body \Rightarrow penalization velocity depends on space and time

3 - "Standard" penalization: \hookrightarrow use only boundary velocity

$$\overline{\boldsymbol{u}}_i^n = \boldsymbol{u}_{\phi=0}^n$$

 $\Rightarrow 1^{nd}$ order

4.7E-03 4.3E-03 3.8E-03 3.4E-03 3.0E-03 2.6E-03 2.1E-03 1.7E-03 1.3E-03 8.5E-04 4.3E-04

4 - "Improved" penalization: \hookrightarrow use Level Set informations $\overline{\boldsymbol{u}}_{i}^{n} = \boldsymbol{u}_{\phi=0}^{n} - \phi_{i} \left(\partial \boldsymbol{u}_{i} / \partial \boldsymbol{n} \right)^{n-1}$ $\Rightarrow 2^{nd}$ order

Institut de Mathématiques de

Bordeaux

1.4E-05 1.3E-05 1.2E-05 1.0E-05 9.0E-06 7.8E-06 5.2E-06 3.9E-06 2.6E-06 1.3E-06

► Validation 1: steady cylinder at Re = 200:

Fig. : Temporal evolution of the lift (dashed line) and the drag (solid line) at Re = 200.

Fig. : Spectrum (DFT) of the lift (dashed line) and the drag (solid line) at Re = 200.

Authors	S_t	C_D
Braza 1986	0,2000	1,4000
Henderson 1997	0,1971	1,3412
He <i>et al.</i> 2000	0,1978	1,3560
Bergmann 2006	0,1999	1,3900
Présente étude	0,1980	1,3500

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

► Validation 2: moving cylinder at Re = 550:

Fig. : Drag coefficient for an impulsively started cylinder at Re = 550. Medium time.

Similar results that those obtained by Ploumhans et al. JCP 165 (2010)
Remark: The oscillations (b) decrease with order and mesh refinement,
Chiu et al. JCP 229 2010

Fish swimming | Parametrization

► Body velocity *i*:

$$\boldsymbol{u}_i = \overline{\boldsymbol{u}}_i + \widehat{\boldsymbol{u}}_i + \widetilde{\boldsymbol{u}}_i. \tag{18}$$

- ullet Translation velocity $\overline{oldsymbol{u}}_i$ is computed using forces $oldsymbol{F}$
- Rotation velocity $\widehat{oldsymbol{u}}_i$ is computed using torques $oldsymbol{\mathcal{M}}$
- ullet Deformation velocity $\widetilde{oldsymbol{u}}_i$ is imposed for the swim
- Take care to not add artificial forces and torques!
 - 1. Impose any deformation,
 - 2. Subtract mass center deplacement,
 - 3. Rotate the body by the opposite angle generate by deformation ,
 - 4. Homothety for mass conservation

Fish swimming | Parametrization

► Steady fish shape:

Fig. : Sketch of the Karman-Trefftz transform. The *z* space is transformed to fit $0 \le x_s \le \ell$

$$z = n \frac{\left(1 + \frac{1}{\zeta}\right)^n + \left(1 - \frac{1}{\zeta}\right)^n}{\left(1 + \frac{1}{\zeta}\right)^n - \left(1 - \frac{1}{\zeta}\right)^n},$$

$$\Rightarrow \textbf{Only 3 parameters } b = (\eta_c, \alpha, \ell)^T$$

$$\triangleright \alpha = (2 - n)\pi \text{ : tail angle}$$

$$\triangleright \eta_c < 0 \text{ circle center}$$

$$\triangleright \ell > 0 \text{ fish length } (\ell = 1)$$

NSTITUT NATIONAL

DE RECHERCHE

EN INFORMATIQUE

EN AUTOMATIQUE

RINRIA

BORDEAUX - SUD OUEST

centre de recherche

Fish swimming | Parametrization

Fig. : Sketch of swimming and maneuvering shape.

$$\Rightarrow$$
 Only 4 parameters $oldsymbol{s}=(c_1,\,c_2,\,\lambda,\,f)^T$

 \triangleright 2 parameters for envelop curve c_1 et c_2 + frequency f + wavelength λ .

 $\Rightarrow \text{Shape } \boldsymbol{b} = (\eta_c, \, \alpha, \, \ell)^T + \text{swimming law } \boldsymbol{s} = (c_1, \, c_2, \, \lambda, \, f)^T = \text{7 parameters}$ (we can also add r(t) for maneuvers)

RINRIA

INFORMATIQUE

Fish swimming | Wake organization

Fish swimming | **Classification of fishes**

► Fishes classified into 2 categories :

- Median and Paired Fins (MPF)
- ▷ Body and Caudal Fin (BCF) : most common
 - \hookrightarrow Thunniform (approx. par F_1)
 - \hookrightarrow Carangiform (approx. par F_2)
 - \hookrightarrow Subcarangiform (approx. par F_3)
 - \hookrightarrow Anguiliform (approx. par F_4)

Fish	Shape			swimming law			
Fi	η_c	lpha	ℓ	<i>c</i> ₁	c_2	λ	f
F_1	-0.04	5	1	0.1	0.9	1.25	2
F_2	-0.03	5	1	0.4	0.6	1.00	2
F_3	-0.02	5	1	0.7	0.3	0.75	2
F_4	-0.01	5	1	1.0	0.0	0.50	2

Tab. : Numerical parameters. The maximal tail amplitude deformation is $A(c_1, c_2, \ell) = 0.4$.

Fish swimming | **BCF modes**

Workshop Maratea, may 13 2010 - p. 25

Fish swimming | **BCF modes**

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche BORDEAUX - SUD OUEST

Workshop Maratea, may 13 2010 - p. 25

Fish swimming | **BCF modes** Fish F_1 Fish F_2 Fish F_3 Fish F_4 Comparison of wakes generated at $Re = 10^4$ nstitut Mathématiques de NSTITUT NATIONAL *RINRIA* Bordeaux DE RECHERCHE centre de recherche BORDEAUX - SUD OUEST EN INFORMATIQUE ET EN AUTOMATIQUE

Fish swimming | **BCF modes**

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche BORDEAUX - SUD OUEST

Workshop Maratea, may 13 2010 - p. 25

Fish swimming | BCF modes

- \blacktriangleright Each fish swims on distance D=9
 - $\hookrightarrow |U_{max}|$: maximal velocity
 - $\hookrightarrow |\overline{U}| \text{: mean velocity}$
 - $\hookrightarrow |\gamma_{max}|$: maximal acceleration
 - $\hookrightarrow T_9$: time to reach distance D = 9

	$Re = 10^3$			$Re = 10^3 \qquad \qquad Re = 10^4$				
fish	$ U_{max} $	$ \overline{U} $	$ \gamma_{max} $	T_9	$ U_{max} $	$ \overline{U} $	$ \gamma_{max} $	T_9
F_1	0.91	0.83	3.3	10.81	1.42	1.22	3.4	7.37
F_2	0.97	0.93	4.6	9.70	1.39	1.27	4.9	7.06
F_3	0.92	0.89	7.5	10.13	1.18	1.14	8.0	7.88
F_4	0.65	0.63	9.5	14.2	0.81	0.79	10.4	11.4

Tab. : Maximal velocity $|U_{max}|$, maximal acceleration $|\gamma_{max}|$ and average velocity $|\overline{U}|$ at $Re = 10^3$ and $Re = 10^4$.

► The power spent to swim is:

$$P(t) = -\int_{\partial \Omega_s} p \, \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}S + \int_{\partial \Omega_s} (\sigma' \cdot \boldsymbol{n}) \cdot \boldsymbol{u} \, \mathrm{d}S, \tag{20}$$

with

$$\sigma_{ij}' = \frac{1}{Re} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$$

► Transformation using energy conservation (remove $\partial \Omega_s$)

$$P(t) = \frac{\partial}{\partial t} \int_{\Omega_f} \frac{u^2}{2} \,\mathrm{d}\Omega + \frac{1}{Re} \int_{\Omega_f} \sigma'_{ij} \frac{\partial u_i}{\partial x_j}, \mathrm{d}\Omega.$$
(21)

 \hookrightarrow power = kinetic energy variation + power lost in viscous dissipation

► Average energy:

 \hookrightarrow Energy for fish F_k to swim distance D is $E^{(k)} = \int_{T_k} P^{(k)} dt$.

Poisson	$Re = 10^{3}$	$Re = 10^{4}$
F_1	0.98	0.60
F_2	0.99	0.54
F_3	0.90	0.45
F_4	0.77	0.30

Tab. : Comparison of the energy $E^{(k)}$ required to travel the distance D = 9 at $Re = 10^3$ and $Re = 10^4$. All fishes F_1 , F_2 , F_3 and F_4 present the same tail amplitude A = 0.4.

► Observations: Fish *F*₄ spends least energy

 $\hookrightarrow \mathsf{Also \ slowest} \Rightarrow \mathsf{unfair \ comparison}$

► Fair comparaison: fish with same velocity

Same velocity \Rightarrow regulator r of fish tail amplitude $A(c_1, c_2, \ell)$

 \hookrightarrow Target velocity: average velocity of slowest fish (U_4 for F_4)

 \hookrightarrow If $U_i > U_4$ increase A, else if, decrease

fish	$Re = 10^3$	$Re = 10^{4}$
F_1^r	0.64	0.24
F_2^r	0.66	0.26
F_3^r	0.77	0.28
F_4	0.77	0.30

Tab. Comparison of the energy $E^{(k)}$ required to travel the distance d = 9 at $Re = 10^3$ and $Re = 10^4$. Fishes F_1^r , F_2^r , F_3^r regulated the maximal tail amplitude to swim at the velocity of F_4 .

► Observations: Fish F_1 spent least energy, Fish F_4 spent most energy.

 \hookrightarrow vertical movements create resistance \Rightarrow least efficient in energy view point

Gray's paradox [1] :

"the power required for a dolphin of length 1.82m to swim at a speed of 10.1m/s is about seven times the muscular power available for propulsion (swimming more efficient than rigid body towed at same velocity)

 \hookrightarrow Paradox contested (J. Lighthill [2]) : fish power 3X higher

 \hookrightarrow Paradox "confirmed" experimentally at MIT (robot bluefin tuna) by Barret *et al.* [3]

^[3] Barrett, D.S., Triantafyllou, M.S., Yue, D.K.P., Grosenbauch, M.A., Wolfgang, M.J. (1999) : Drag reduction in fish-like locomotion, *J. Fluid Mech.* **392** pp. 182-212.

^[1] Gray J. (1936) : Studies in animal locomotion. VI. The propulsive power of the dolphin, *J. Exp. Biol.* **13** pp. 192-199.

^[2] Lighthill, M.J. (1971) : Large amplitude elongated-body theory of fish locomotion, *Proc. R. Soc. Mech. B.* 179 pp. 125-138.

► Propulsive index

$$I_p = rac{P_{engine}}{P_{ps}}, \quad ps: ext{periodic swim}.$$

fish	$Re = 10^3$	$Re = 10^{4}$
F1	0.26	0.31
F2	0.26	0.21
F3	0.24	0.17
F4	0.17	0.14

Tab. : Propulsive indexes I_p evaluated for fishes F_1 , F_2 , F_3 and F_4 at $Re = 10^3$ and $Re = 10^4$.

▶ Observations: $I_p < 1 \Rightarrow$ power "engine" < power "swim"

(22)

- ► Observation: swim "costly"
- ► Idea: burst and coast swimming

Benefit of gliding periods?

- \hookrightarrow Definition of Burst and coast : several cycles
 - fish swims from minimal velocity U_i to maximal velocity U_f
 - fish glides from maximal velocity U_f to minimal velocity U_i
 - \triangleright We choose $U_f = \alpha_f U_{max}$ et $U_i = \alpha_i U_{max}$

Goal: Compare burst and coast swimming / periodic swimming (same average velocity)

Example of burst and coast swimming with $\alpha_i = 0.2$ and $\alpha_f = 0.8$.

Test case: Fish F_1 at $Re = 10^3$ and at $Re = 10^4$

Efficiency of burst and coast swimming *R*:

$$R = \frac{P_{bc}}{P_{ps}}, \quad bc : \text{burst and coast.}$$
(23)

$(lpha_i,lpha_f)$	$Re = 10^{3}$	$Re = 10^{4}$
(0.2,0.8)	0.77	0.85
(0.6, 0.8)	1.02	1.00
(0.4, 0.6)	0.85	0.81
(0.2, 0.4)	0.63	0.71

Tab. : Efficiency R of burst and coast swimming for fish F_1 at $Re = 10^3$ and $Re = 10^4$ using different couples of $U_f = \alpha_f U_{max}$ and $U_i = \alpha_i U_{max}$.

 \hookrightarrow Burst and coast swimming efficient for low speeds!

Fish swimming | Maneuvers

Example: predator/prey \Rightarrow reach food

Method: add mean curvature r

Fig. : Sketch of swimming and maneuvering shape.

Question: adaptation of r(t)?

Fish swimming Maneuvers

Idea: adapt *r* using "angle of vision" θ_f , i.e. $r = r(\theta_f)$: "food" x_G eyes $\theta_f > 0$ x_G $\theta_f < 0$ eves "food" Fig. : Sketch of the oriented food angle of vision. $r(\theta_f) = \begin{cases} \infty & \text{if } \theta_f = 0, \\ \overline{r} & \text{if } \theta_f \ge \overline{\theta_f}, \\ -\overline{r} & \text{if } \theta_f \le -\overline{\theta_f}, \\ \overline{r} \left(\frac{\overline{\theta}}{\theta_f}\right)^2 & \text{otherwise.} \end{cases}$ (24)

- We impose $|r| \ge \overline{r}$ and $|\theta_f| \ge \overline{\theta_f}$. We chose arbitrarily $\overline{r} = 0.5$ and $\overline{\theta} = \pi/4$.

DE RECHERCHE EN INFORMATIQUE

Aathématiques de

Bordeaux

RINRIA Centre de recherche BORDEAUX - SUD QUEST

Fish swimming | Maneuvers

$$Re = 10^3$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Fish swimming | Maneuvers

▶ Configuration: school limited to 3 fishes with parameters F_1

 \hookrightarrow **Preliminary study** 2 fishes F_1 with parallel swim

Velocity *u* Phase

Velocity *u* Anti-phase

► **Observation:** existence of a zone in the wake where flow has same velocity sign than fishes velocities

► Idea: put a third fish in this zone with "potential benefits"

► **Observation:** existence of a zone in the wake where flow has same velocity sign than fishes velocities

► Idea: put a third fish in this zone with "potential benifits"

Anti-phase. \Rightarrow Quite efficient.

► **Observation:** existence of a zone in the wake where flow has same velocity sign than fishes velocities

► Idea: put a third fish in this zone with "potential benifits"

Phase. \Rightarrow Very efficient.

► Goal: save energy

 \hookrightarrow adapt velocity of the third fish

(regulation of tail amplitude A to reach same velocity than two other fishes)

		Anti-phase						
LD	0.4	0.5	0.6	0.7	0.4	0.5	0.6	0.7
1.5	15.0	16.3	11.1	7.1	6.8	6.9	9.8	7.1
2.0	10.1	14.5	9.8	6.0	6.8	6.1	9.8	6.0
2.5	8.4	13.6	9.0	5.1	6.7	5.3	9.0	5.1
3.0	15.0	15.1	6.9	5.0	5.2	5.1	7.0	3.2
3.5	5.2	13.2	6.2	2.2	4.9	5.0	6.2	0.5

Tab. : Percentage of energy saved for the three fishes school in comparison with three independent fishes. $Re = 10^3$.

The 3 fishes school can save an amount around 15% of total energy!!

Jellyfish swimming

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Workshop Maratea, may 13 2010 - p. 41

Three dimensions | Method

► Study engineering problems : several millions of dofs

- $\hookrightarrow \mathsf{Required} \text{ parallel code}$
- \Rightarrow One solution: Message Passing Interface (MPI)
- \Rightarrow Other solution with higher abstraction level:

Portable, Extensible Toolkit for Scientific Computation (PETSc)

http://www.mcs.anl.gov/petsc/petsc-as/

- \hookrightarrow PETSc gives:
- structures for parallelism (DA Distributed Arrays),
- librairies to solve linear systems in parallel (KSP Krylov Subspace methods)

Three dimensions | Validation

Sphere at Re = 500

 $\hookrightarrow C_D = 0.61 \Rightarrow$ in agreement with literature results (and correlations).

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Steady shape: ellipses centered on the backbone x_i , with axis $y(x_i)$ and $z(x_i)$.

► Three dimensions

- \hookrightarrow periodic, no artificial forces and torques,
- \hookrightarrow each ellipse is orthogonal to the backbone \Rightarrow mass conservation

► Three dimensions

- \hookrightarrow periodic, no artificial forces and torques,
- \hookrightarrow each ellipse is orthogonal to the backbone \Rightarrow mass conservation

 $\begin{array}{l} \textbf{3D fisf } Re = 1000. \ \textbf{Mesh } 768 \times 128 \times 256 \\ \Rightarrow \textbf{3D and 2D wakes behavior are different} \\ \textbf{S.Kern and P. Koumoutsakos, J Exp. Biology 209, 2006.} \end{array}$

Three dimensions | Fish maneuvers

3D fisf Re = 1000. Mesh $512 \times 128 \times 512$ \Rightarrow Turn seems more difficult than in 2D case ...

BORDEAUX - SUD OUEST

centre de recherche

RINRIA ET EN AUTOMATIQUE

NSTITUT NATIONAL

DE RECHERCHE

EN INFORMATIQUE

Three dimensions | Fish maneuvers

3D fisf Re = 1000. Mesh $512 \times 128 \times 512$ \Rightarrow Quasi 2D (fish height is constant y = 0.3) \Rightarrow more efficient

Workshop Maratea, may 13 2010 – p. 48

🕅 I N R I A

DE RECHERCHE

EN INFORMATIQUE

EN AUTOMATIQUE

Three dimensions | Fish schooling

3D fisfes Re = 1000. Mesh $768 \times 128 \times 256$ \Rightarrow No efficient effect for 3^{rd} fish. 3D wake \neq 2D wake (no inverted VK street)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Three dimensions | Jellyfish

3D jellyfish Re = 1000. Mesh $256 \times 256 \times 512$. \Rightarrow Velocity very close to 2D case (quasi axi-symetric)

NSTITUT NATIONAL

DE RECHERCHE

EN INFORMATIQUE

ET EN AUTOMATIQUE

RINRIA

Workshop Maratea, may 13 2010 - p. 50

Conclusions

METHODS

Cartesian meshes and penalization

- ▷ Advantages: simple numerical algo. and parallelism
- Drawbacks: precision, turbulence, boundary layers

 \hookrightarrow **Solution:** local refinement "octree" or global multi-grids, improve penalization order (2nd order), ... (?)

► Collocation scheme: non oscillating compact schemes

- ▷ Advantages: only one grid (parallelism), simple boundary conditions
- Drawbacks: no spurious modes but discrete conservations not exactly satisfied
 - \hookrightarrow Solution: 4^{th} order correction (E. Dormy, JCP 151), MAC, ...

Conclusions

RESULTS

► Dimension 2

- Validation test case cylindre
- Self propelled fishes
 - \hookrightarrow Modeling BCF (tuna, eels, etc..)
 - $\hookrightarrow \text{Energetic study}$
 - $\hookrightarrow \text{Maneuvers, turns}$
 - $\hookrightarrow \mathsf{Fish} \ \mathsf{schooling} \ \mathsf{efficient}$
- ► Dimension 3 (now and future...)
 - ▷ Validation sphere
 - ▷ Self propelled fishes
 - ⊳ Jellyfish

\Rightarrow Validations and improvement are still necessary

Next

► Fluid-Structure interactions & elasticity (eulerian, post doc Thomas Milcent)

- $\hookrightarrow \text{Model the tail/fins}$
- ightarrow Example: cylinder motion imposed by penalization with free motion of the "tail"

